A new species of Cyrtodactylus (Squamata: Gekkonidae) from Phu Yen Province, Vietnam

DANG TRONG DO ${ }^{1}$, QUYEN HANH DO ${ }^{2,3}$, MINH DUC LE ${ }^{2,4,5}$, HANH THI NGO ${ }^{4,6,7}$, THOMAS ZIEGLER ${ }^{6,7}$,
${ }^{1}$ Phu Yen University, 18 Tran Phu Road, Phu Yen, Vietnam. \#"dotrongdang@gmail.com; © https://orcid.org/0000-0003-3048-1434
${ }^{2}$ Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Hanoi, Vietnam.
E= quyendo.k59@gmail.com; © https://orcid.org/0000-0002-9437-4673
${ }^{3}$ Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam. \#"nqt2@yahoo.com; ; © https://orcid.org/0000-0002-6601-0880
${ }^{4}$ Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam. ${ }^{=}$le.duc.minh@hus.edu.vn; © https://orcid.org/0000-0002-2953-2815
${ }^{5}$ Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA.
${ }^{6}$ AG Zoologischer Garten Köln, Riehler Str. 173, D-50735 Cologne, Germany. $\triangleq={ }^{\prime \prime}$ ngohanhhus@gmail.com; © https://orcid.org/00000-0002-5283-6243
${ }^{7}$ Institute of Zoology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany.
E= ziegler@koelnerzoo.de; © https://orcid.org/0000-0002-4797-609X
${ }^{8}$ Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam. $=_{=\text {" cuongiebr@gmail.com; © https://orcid.org/0000-0001-5158-4526 }}$
Corresponding author. $=^{}$ cuongiebr@gmail.com

Abstract

We describe a new species of the genus Cyrtodactylus based on six adult specimens from Lac Dao forests, Phu Yen Province, southern Vietnam. Cyrtodactylus tayhoaensis sp. nov. is distinguished from the remaining Indochinese benttoed geckos by a combination of the following characters: medium size (SVL up to 94.2 mm); nasal scales 5-6; internasal single or double; ciliaria 29-34; dorsal tubercles in 20-22 irregular transverse rows; ventral scale in 37-41 longitudinal rows at midbody; ventrolateral folds present without interspersed tubercles; precloacal pores absent in females, precloacal pores 4 or 5 in males; 10 or 11 enlarged femoral scales on each thigh; femoral pores $3-7$ in males, absent in females; postcloacal tubercles 3 or 4; lamellae under toe IV 22-24; dorsal pattern consisting of unclear transverse bands formed by irregularly shaped dark-brown blotches, a discontinuous neckband with V-shape or triangle shape in the middle, dorsal head surface with dark-brown blotches; subcaudal scales transversely enlarged. In the phylogenetic analyses, the new species is recovered as a sister taxon to C. kingsadai with approximately 4% genetic divergence between the two species based on a fragment of the COI gene. This is the second species of Cyrtodactylus known from Phu Yen Province located in southern Vietnam.

Key words: Cyrtodactylus tayhoaensis sp. nov., molecular phylogeny, taxonomy, Phu Yen Province

Introduction

The Cyrtodactylus irregularis species group currently contains 24 species (except C. badenensis) known from southern Indochina, in particular southern Vietnam (Nazarov et al. 2012; Pauwels et al. 2018; Do et al. 2021; Grismer et al. 2021a,b; Ngo et al. 2022; Uetz et al. 2022). In the last five years, eight new species in this group have been described, namely C. chungi Ostrowski, Do, Le, Ngo, Pham, Nguyen, Nguyen \& Ziegler; C. culaochamensis Ngo, Grismer, Pham \& Wood; C. gialaiensis Luu, Tran, Nguyen, Le \& Ziegler; C. orlovi Do, Phung, Ngo, Le, Ziegler, Pham \& Nguyen; C. phnomchiensis Neang, Henson \& Stuart; C. phumyensis Ostrowski, Le, Ngo, Pham, Phung, Nguyen \& Ziegler; C. raglai Nguyen, Duong, Grismer \& Poyarkov; and C. sangi Pauwels, Nazarov, Bobrov \& Poyarkov (Do et al. 2021; Luu et al. 2017; Neang et al. 2020; Ngo et al. 2020; Nguyen et al. 2021; Ostrowski et al. 2020, 2021; Pauwels et al. 2018).

Recent field research in Vietnam's Phu Yen Province has led to the discovery of a so far unknown Cyrtodactylus population. Phu Yen Province is located in the southern Vietnam and harbors 116.819 ha of evergreen forest (Statistical Office of Phu Yen Province 2016). However, the biodiversity of this province is poorly studied, in particular the herpetofauna. Five new species were recently described from Phu Yen Province, namely Cyrtodactylus kingsadai Ziegler, Phung, Le \& Nguyen, Leptolalax macrops Duong, Do, Ngo, Nguyen, \& Poyarkov, Acanthosaura murphyi Nguyen, Do, Hoang, Nguyen, McCormack, Nguyen, Orlov, Nguyen \& Nguyen, Limnonectes phuyenensis Pham, Do, Le, Ngo, Nguyen, Ziegler \& Nguyen, and Gekko phuyenensis Nguyen, Nguyen, Orlov, Murphy \& Nguyen (Ziegler et al. 2013; Duong et al. 2018; Nguyen et al. 2018; Pham et al. 2020; Nguyen et al. 2021).

During field research in Lac Dao Village, Tay Hoa District, a Cyrtodactylus population was found, that differs from other species of Cyrtodactylus in morphological characteristics and genetic divergence. It is therefore described as a new species in the following.

Material and methods

Sampling. Field surveys were conducted in Lac Dao Forest, Son Thanh Tay Commune, Tay Hoa District, Phu Yen Province, Vietnam in September 2015 and September 2019 (Fig. 1). Specimens were anaesthetized and euthanized in a closed vessel with a piece of cotton wool containing ethyl acetate (Simmons 2002), fixed in 85% ethanol and subsequently stored in 70% ethanol. Specimens were subsequently deposited in the collections of the Phu Yen University (PYU), Phu Yen Province and the Institute of Ecology and Biological Resources (IEBR), Hanoi, Vietnam.

Molecular data and phylogenetic analyses. As the new population possesses morphological characters representing the Cyrtodactylus irregularis complex, we incorporated all taxa of the group (sensu Grismer et al. 2021) in the analyses. Four species, C. condorensis Smith, C. grismeri Ngo, C. spelaeus Nazarov, Poyarkov, Orlov, Nguyen, Milto, Martynov, Konstantinov \& Chulisov, and C. wayakonei Nguyen, Kingsada, Rösler, Auer \& Ziegler, were used as outgroups based on the results of Grismer et al. (2021).

DNA was extracted using DNeasy Blood and Tissue kit (Qiagen, Germany) following the manufacturer's instruction. Extracted DNA was amplified by PCR mastermix (Qiagen, Germany) with $21 \mu \mathrm{l}$ volume ($10 \mu \mathrm{l}$ of mastermix, $5 \mu \mathrm{l}$ of water, $2 \mu \mathrm{l}$ of each primer at $10 \mathrm{pmol} / \mathrm{ml}$ and $2 \mu \mathrm{l}$ of DNA). PCR condition was: $95^{\circ} \mathrm{C}$ for 15 minutes to active the taq; with 40 cycles at $95^{\circ} \mathrm{C}$ for 30 seconds, $45^{\circ} \mathrm{C}$ for 45 seconds, $72^{\circ} \mathrm{C}$ for 60 seconds; and the final extension at $72^{\circ} \mathrm{C}$ for 6 minutes. A fragment of the mitochondrial gene, cytochrome c oxidase subunit 1 (COI), was amplified using the primer pair VF1-d (5^{\prime}-TTCTCAACCAACCACAARGAYATYGG-3') and VR1d (5'-TAGACTTCTGGGTGGCCRAARAAYCA-3)' (Ivanova et al. 2006). PCR products were visualized using electrophoresis through a 2% low melting-point agarose gel stained with ethidium bromide. Successful amplifications were purified to eliminate PCR components using GeneJETTM PCR Purification kit (ThermoFisher Scientific, Lithuania). Purified PCR products were sent to FirstBase (Malaysia) for sequencing in both directions.

After sequences were aligned by Clustal X v2 (Thompson et al. 1997), data were analyzed using maximum parsimony (MP) implemented in PAUP*4.0b10 (Swofford 2001), maximum likelihood as implemented in IQ-TREE (Nguyen et al. 2015) and Bayesian inference (BI) as implemented in MrBayes v3.2 (Ronquist et al. 2012). For MP analysis, heuristic analysis was conducted with 100 random taxon addition replicates using tree-bisection and reconnection (TBR) branch swapping algorithm, with no upper limit set for the maximum number of trees saved. Bootstrap support (BP) was calculated using 1000 pseudo-replicates and 100 random taxon addition replicates. All characters were equally weighted and unordered. For the maximum likelihood (ML) analysis, we used IQ-TREE v.1.6.7.1 (Nguyen et al. 2015) with a single model and 10,000 ultrafast bootstrap replications (UFB). The optimal model for nucleotide evolution was determined using jModelTest v2.1.4 (Darriba et al. 2012).

For Bayesian analyses, we used the optimal model determined by jModeltest with parameters estimated by MrBayes 3.2.7. Two independent analyses with four Markov chains (one cold and three heated) were run simultaneously for 10 million generations with a random starting tree and sampled every 1000 generations. Loglikelihood scores of sample points were plotted against generation time to determine stationarity of Markov chains. Trees generated before log-likelihood scores reached stationarity were discarded from the final analyses using the burn-in function. The posterior probability values (PP) for all nodes in the final majority rule consensus tree were provided. We regard BP $\geq 70 \%$ and UFB and PP of $\geq 95 \%$ as strong support and values of $<70 \%$ and $<95 \%$, respectively, as weak support (Hillis \& Bull 1993; Minh et al. 2013; Ronquist et al. 2012).

FIGURE 1. Type locality of Cyrtodactylus tayhoaensis sp. nov. in Phu Yen Province (purple circle), Vietnam.

The optimal model for nucleotide evolution was set to TIM2+I+G for ML analysis and GTR $+\mathrm{I}+\mathrm{G}$ for Bayesian analysis as selected by jModelTest. For Bayesian analysis, the cutoff point for the burn-in function was set to 56 as $-\ln L$ scores reached stationarity after 56,000 generations. Uncorrected pairwise divergences were calculated in PAUP*4.0b10.

Morphological characters. Measurements were taken with a digital calliper to the nearest 0.1 mm . Morphological characters followed Nguyen et al. (2017). Abbreviations are as follows: snout-vent length (SVL), from tip of snout to vent; tail length (TaL), from vent to tip of tail (* regenerated); head length (HL), from tip of snout to retroarticular process of jaw; head width (HW), maximum width of head; head height (HH), from occiput to underside of jaws; orbital diameter (OD), greatest diameter of orbit; snout to eye distance (SE), from tip of snout to anterior-most point of eye; eye to ear distance (EE), from anterior edge of ear opening to posterior corner of eye; nares to eye distance (NE), from anterior-most point of eye to posterior-most point of nostril; ear length (ED), longest dimension of ear; forearm length (ForeaL), from base of palm to tip of elbow; crus length (CrusL), from base of heel to knee; axillagroin distance (AG), from axilla to groin measured from posterior edge of forelimb insertion to anterior edge of hindlimb insertion; body width (BW), the widest distance of body; internarial distance (IND), distance between nares; Interorbital distance (IOD), shortest distance between left and right supraciliary scale rows; maximum rostral width (RW); maximum rostral height (RH); maximum mental width (MW); maximum mental length (MH).

Scale counts were taken as follows: supralabials (SL), counted from the first labial scale to corner of mouth; infralabials (IL), counted from the first labial scale to corner of mouth; nasal scales surrounding nare (N); postrostrals or internasals (IN); ciliaria (CIL), scales on eyelid fringe; postmentals (PM); granular scales surrounding dorsal tubercles (GST); ventral scales in longitudinal rows at midbody (V); number of scales along the midbody from mental to anterior edge of cloaca (SLB); enlarged femoral scales (EFS), number of enlarged femoral scale beneath each thigh; femoral pores (FP); precloacal pores (PP); postcloacal tubercles (PAT); the number of dorsal longitudinal rows of tubercles at midbody between the lateral folds (TubR), number of subdigital lamellae on all fingers (NSFI, NSFII, NSFIII, NSFIV, NSFIV); number of subdigital lamellae on all toes (NSTI, NSTII, NSTIII, NSTIV, NSTV). Bilateral scale counts were given as left/right.

Multiple Factor analysis (MFA). We further applied a multiple factor analysis using morphometric and meristic characters in MFA were SVL, HL, HW, HH, OD, SE, SL, IL, N, V, SLB, FP, PP, DTR, EFS, NSFV and NSTIV. Other morphological characters were not used due to the limitation of available morphometric and meristic data or incomplete sampling (regenerated tail). All statistical analyses were performed using R Core Team (2018). The MFA were clustered into different groups comprising three quantitative groups - "SVL, "Head (including HL, HW, HH), "Eye and XX qualitative groups-"Species, "SL.IL (consist of SL and IL), "Nasal, "V (including V and SLB), "FP, "PP, "DTR, "EFS, "LIV (consist of NSFIV and NSTIV). To remove the effects of allometry, morphometric data were also normalized to adjust raw data of morphometrics through the allom() function in R package GroupStruct (available at http://github.com/chankinonn/GroupStruct). Accordingly, the allometric formula is $\mathrm{X}_{\mathrm{adj}}=\log _{10}(\mathrm{X})$ $\beta\left[\log _{10}(\mathrm{SVL})-\log _{10}\left(\mathrm{SVL}_{\text {mean }}\right)\right]$, where $\mathrm{X}_{\mathrm{adj}}=$ adjusted value; $\mathrm{X}=$ measured value; $\beta=$ unstandardized regression coefficient for each population and $\mathrm{SVL}_{\text {mean }}=$ overall average SVL of two populations (Thorpe 1975, 1983; Turan 1999; Lleonart et al. 2000; Chan et al. 2021, Grismer et al. 2022). The ordination test was performed using the package Factoextra (Kassambara and Mundt 2017) and FactoMinerR (Le et al. 2008) in the software R. The approach was applied to identify active groups and to explain phenotypic variance by estimating the first two Dim values-eigenvalue proportions. Similar coded colors in the MFA scatter plot, surrounded with convex hulls, were presented to visualize the phenotypic spaces of Cyrtodactylus tayhoaensis sp. nov. and C. kingsadai. Their spaces were shown within a spatial coordinate of dimension axes (Dim1 and Dim2). To evaluate the overlap, the Dim1 and Dim 2 values of each Cyrtodactylus individual were extracted to identify the difference between the two species using the T-test. For all of the tests, we applied a significance level of $\mathrm{p}<0.05$.

Results

Phylogenetic analyses. The final matrix contained 652 aligned characters with 250 parsimony informative. MP analysis of the dataset recovered five most parsimonious trees with 1547 steps (Consistency index $=0.3$; Retention index $=0.65$). The topology recovered by the BI analysis was similar to that reported in Ngo et al. (2022). The new population from Phu Yen Province was well corroborated as a sister taxon to C. kingsadai also from the same province with perfect support values from all analyses (Fig. 2). The two taxa were diverged by approximately 4%
in pairwise genetic distance based on a fragment of COI (Supplementary data). They in turn were shown to be most closely related to C. raglai from Khanh Hoa Province with strong support found only in the BI analysis (UFB = $91 \%, \mathrm{BP}<50 \%, \mathrm{PP}=99 \%$). Based on the molecular evidence and the morphological data presented below, we hypothesize that the new population from Phu Yen Province is a new species and describe it below.

FIGURE 2. Phylogram based on the Bayesian analysis. Number above and below branches are ML/MP bootstrap and ultrafast bootstrap values and Bayesian posterior probabilities ($\geq 50 \%$), respectively.

FIGURE 3. (A) The first four important variables of the first axes (Dim1) in the Multiple factor analysis (MFA); (B) The first four important variables of the second axes (Dim2) in the MFA; (C) Scatterplot of all variable groups for Dim1 and Dim2 axes in the MFA, green triangles as inactive groups, red triangles as active groups or variables; (D) A MFA of Cyrtodactylus tayhoaensis sp. nov. and C. kingsadai.

Morphological analysis. Morphologically, the new form from Tay Hoa District, Phu Yen Province is closely similar to C. kingsadai from Dai Lanh Cape, Tuy Hoa District, Phu Yen Province, however, they plotted separately from each other in MFA and there was a significant difference between two species ($\mathrm{p}<0.05$). The MFA also identified the data set of SVL, Head, Eye, SL, V, EFS, FP, PP, DTR, SL as active groups (Fig. 3). Morphometrics and meristics that contributed the most to the first multi-factorial dimension were OD, HW, SVL, HL, SE. HH (Fig. 3), while SE, OD, SVL, HH, HL, HW were the most important in the second multi-factorial dimension (Fig. 3).

Cyrtodactylus tayhoaensis sp. nov.

(Figs. 4-6)

Holotype. IEBR R.4991, adult male, collected by Dang Trong Do on 14 September 2019, in a rocky stream, near Lac Dao Village ($12^{\circ} 53^{\prime} 50.0^{\prime \prime} \mathrm{N}, 109^{\circ} 1^{\prime} 28.0^{\prime \prime}$ E, elevation 130 m a.s.l), Son Thanh Tay Commune, Tay Hoa District, Phu Yen Province, southern Vietnam.

Paratypes. IEBR R.5078, R.5079, adult females and IEBR R.4992, adult male, the same collection data as the holotype. PYU.DTD 572, adult female; PYU.DTD 573 adult male, collected by Do Trong Dang on 4 September 2015, in a rocky stream, near Lac Dao Village (1253'13.0 N, 1091'17.3 E, elevation 230 m a.s.l), Son Thanh Tay Commune, Tay Hoa District, Phu Yen Province, southern Vietnam.

Diagnosis. The new species can be distinguished from other members of the genus Cyrtodactylus by a combination of the following characters: medium size (SVL up to 94.2 mm); nasal scales $5-6$; internasal single or double; ciliaria 29-34; dorsal tubercles in 20-22 irregular transverse rows; ventral scale rows in 37-41 longitudinal rows at midbody; ventrolateral folds present without interspersed tubercles; precloacal pores absent in females, precloacal pores 4 or 5 in males; 10 or 11 enlarged femoral scales on each thigh; femoral pores $3-7$ in males, absent in females; postcloacal tubercles 3 or 4; lamellae under toe IV 22-24; dorsal pattern consisting of unclear transverse bands formed by irregularly shaped dark-brown blotches, a discontinuous neckband with V-shape or triangle shape in the middle, dorsal head surface with dark-brown blotches; subcaudal scales transversely enlarged.

Description of holotype. Adult male, snout-vent length (SVL) 85.5 mm ; body elongate (AG/SVL 0.44); head distinct from neck, elongate, depressed (HL/SVL 0.30, HW/HL 0.66, HH/HL 0.39); eye large (OD/HL 0.27), pupils vertical; upper eyelid fringe with spinous scales; ear opening below the postocular stripes, obliquely directed and oval, small in size (ED/HL 0.08); nares oval, surrounded by supranasal, rostral, first supralabial and three postnasals; supranasals separated from each other by two nasorostrals and two pentagonal internasals; loreal region and frontal concave; snout long (SE/HL 0.44), round anteriorly, longer than diameter of orbit (OD/SE 0.61); snout scales small, round, granular, larger than those in frontal and parietal regions; rostral rectangular, wider than high (RH/RW 0.61) with a medial suture, bordered by first supralabial, nostril, internasals and supranasal on each side; mental triangular, wider than high (MH/MW 0.58); postmentals two, enlarged, in contact posteriorly, bordered by mental anteriorly, first infralabial laterally, and an enlarged chin scale posteriorly; supralabials $10 / 11$; infralabials $9 / 9$.

Dorsal scales granular; dorsal tubercles round, keeled, conical, four or five times larger than the size of adjoining scales, each surrounded by 9 or 10 granular scales, tubercles forming 22 irregular longitudinal rows at midbody; ventral scales smooth, medial scales 2-3 times larger than dorsal granules, round, subimbricate, largest posteriorly, in 38 longitudinal rows at midbody; lateral folds present, without interspersed tubercles; gular region with homogeneous smooth scales; ventral scales between mental and cloacal slit 143; precloacal groove absent; three rows of enlarged scales present in posterior region of pore-bearing scales; five precloacal pores arranged in a chevron; 11 enlarged femoral scales beneath thigh continuous with enlarged precloacal scales but not continuous with precloacal pores; femoral pores bearing scales enlarged, 7 in total (4 in right thigh, 3 in left thigh), separated from pore-bearing precloacal scales by poreless femoral scales.

Fore and hind limbs moderately slender (ForeaL/SVL 0.17, CrusL/SVL 0.20); dorsal surface of forelimbs covered by few slightly developed tubercles; dorsal surface of hind limbs covered by by slightly developed tubercles; fingers and toes lacking distinct webbing; subdigital lamellae: finger I 15, finger II 18, finger III 18, finger IV 20, finger V 18, toe I 14, toe II 18, toe III 21, toe IV 22, toe V 21.

Tail regenerated, 91.5 mm in length; longer than snout-vent length (TaL/SVL: 1.07); postcloacal tubercles 4/3; subcaudals distinctly enlarged, smooth.

FIGURE 4. The male holotype of Cyrtodactylus tayhoaensis sp. nov. (IEBR R.4991) in life. Photo: D.T. Do.

FIGURE 5. Cloacal region of the holotype of Cyrtodactylus tayhoaensis sp. nov. (IEBR R.4991) in life. Photo: D.T. Do.

Coloration in life. Ground color light brownish-yellow; dorsal head surface with dark-brown blotches; labials brown with yellow cream sutures; skin above the eyes yellowish blue; eyelids with light yellow color; iris yellow grey with black marking; pupil vertical, elliptical, black; a dark band crosses from the posterior of the eye to the upper border of the ear to the posterior of the nuchal area, where it runs into the V-shape with the same color on the posterior nape on each side, forming a discontinuous neckband; tubercles on head, limbs, dorsum and tail light to dark-brown; dorsal pattern consisting of six unclear transverse dark-brown bands, formed by irregular dark-brown blotches; dorsal surface of fore and hind limbs with dark-brown blotches and bars; regenerated part of tail brownish cream with dark-brown marking; chin, throat, chest, belly, lower limbs and ventral surface of tail cream.

FIGURE 6. A) Type series of Cyrtodactylus tayhoaensis sp. nov. in preservative, B) The female paratype (IEBR R.5078) in life. Photos: D.T. Do

Coloration in preservative: The overall color scheme slightly fades in 70\% alcohol; yellow color disappeared in preservation; the bright yellow of the eyelids is no longer visible while main characteristics are still clearly discernible; dorsal ground color of head, neck, body, limbs and tail greyish brown; the color of chin, throat, chest, belly and lower limbs did not change noticeably in preservation.

Sexual dimorphism and variation. The females differ from male specimens in the absence of precloacal pores, femoral pores and hemipenial swellings at the tail base. For other morphological characters see Table 1 and Fig. 6A.

Distribution. Cyrtodactylus tayhoaensis sp. nov. is currently known only from the type locality in Tay Hoa District, Phu Yen Province, Vietnam (Fig. 1).

Etymology. Specific epithet tayhoaensis is a toponym in reference to the type locality of the species. For the common names we suggest Tay Hoa Bent-toed Gecko (English) and Thạch sùng ngón tây hòa (Vietnamese).

Natural history. The geckos were found between 19:00 and 21:00, on granite in water in rocky streams, about $0.5-1.5 \mathrm{~m}$ above the ground, at elevations between 130 and 230 m a.s.l. The surrounding habitat was disturbed evergreen forest of medium or small hardwood and shrub (Fig. 7). The humidity was approximately $70-80 \%$ and the air temperature ranged from 25 to $30^{\circ} \mathrm{C}$.

FIGURE 7. Habitat of Cyrtodactylus tayhoaensis sp. nov. in Son Thanh Tay Commune, Tay Hoa District, Phu Yen Province, southern Vietnam. Photo: D.T. Do.

Comparisons. We compared the new species with its 24 congeners from the Cyrtodactylus irregularis complex based on examination of specimens and data obtained from the literature (Smith 1921a; Heidrich et al. 2007; Orlov et al. 2007; Nazarov et al. 2008; Ngo \& Bauer 2008; Rösler et al. 2008; Geissler et al. 2009; Ngo \& Chan 2010; Nazarov et al. 2012; Ngo 2013; Nguyen et al. 2013; Ziegler et al. 2013; Schneider et al. 2014; Luu et al. 2017; Pauwels et al. 2018; Ngo et al. 2020; Neang et al. 2020; Ostrowski et al. 2020; Ostrowski et al. 2021; Nguyen et al. 2021; Do et al. 2021) (see Table 2). The new species can be distinguished from all other Cyrtodactylus species from Vietnam by morphological characteristics (see Table 3).

Among the species of the Cyrtodactylus irregularis group, Cyrtodactylus tayhoaensis sp. nov. differs from its sister taxon in the phylogenetic analysis, C. kingsadai, by having more nasal scales surrounding nare (5-6 versus 4 in C. kingsadai), fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 165-167 in C. kingsadai), fewer precloacal pores in males (4-5 versus 7-9 in C. kingsadai), the absence of precloacal pores in females (versus 4-8 in C. kingsadai), dark brown transversal bands of the dorsum larger than light brown interspaces (versus dark transversal bands as wide as light interspaces in C. kingsadai), and the presence of an
TABLE 1. Measurements (in mm) and morphological characters of the type series of Cyrtodactylus tayhoaensis sp. nov. (* = regenerated or broken tail); bilateral meristic characters are given as (left/right).

Characters	IEBR R.4991	IEBR R.4992	PYU.DTD 573	IEBR R.5078	IEBR R.5079	PYU.DTD 572	
	(Holotype)	(Paratype)	(Paratype)	(Paratype) (Paratype)	(Paratype) Sex	M	M

TABLE 1. (Continued)

Characters	IEBR R. 4991 (Holotype)	IEBR R. 4992 (Paratype)	$\begin{aligned} & \hline \text { PYU.DTD } 573 \\ & \text { (Paratype) } \end{aligned}$	IEBR R. 5078 (Paratype)	IEBR R. 5079 (Paratype)	PYU.DTD 572 (Paratype)	Min-Max
Sex	M	M	M	F	F	F	
N	6/6	6/6	6/6	6/6	6/5	6/6	5-6
IN	2	1	1	1	2	1	1-2
CIL	31	29	29	32	34	31	29-34
PM	2	2	2	2	2	2	2
GST	9 or 10	10	9	11 or 10	9 or 10	9 or 10	9-11
v	38	38	40	37	41	39	37-41
SLB	143	140	142	156	155	157	140-157
FP	3/4	3/3	2/1	0	0	0	3-7 in males
PP	5	4	5	0	0	0	$4-5$ in males
PAT	4/3	3/3	3/3	3/3	3/3	3/3	3-4/3
TubR	22	20	21	21	21	21	20-22
EFS	11/11	11/10	10/10	10/11	10/10	10/11	10-11
NSFIV	20	22	21	20	21	20	20-22
NSTIV	22	24	23	23	24	22	22-24

TABLE 2. Morphological comparisons between Cyrtodactylus tayhoaensis sp. nov. and its 24 congeners from the Cyrtodactylus irregularis complex based on examination of specimens and data obtained from the literature (Smith 1921a; Heidrich et al. 2007; Orlov et al. 2007; Nazarov et al. 2008; Ngo \& Bauer 2008; Rösler et al. 2008; Geissler et al. 2009; Ngo \& Chan 2010; Nazarov et al. 2012; Ngo 2013; Nguyen et al. 2013; Ziegler et al. 2013; Schneider et al. 2014; Luu et al. 2017; Pauwels et al. 2018; Ngo et al. 2020; Neang et al. 2020; Ostrowski et al. 2020; Ostrowski et al. 2021; Nguyen et al. 2021; Do et al. 2021) (measurements in mm, * = regenerated or broken tail, Max = maximum, other abbreviations defined in the text).

No.	Taxa	SVL	TaL	V	EFS	FP	PP(M)	PP (F)	LD4	LT4	Color patterm of dorsum	Enlarged subcaudals
1	Cyrtodactylus tayhoaensis sp. nov.	82.9-94.2	max 104.3	37-41	10-11	3-7 males 0 females	4-5	0	20-22	22-24	banded	present
2	C. bidoupimontis	74.0-86.3	75.0-86	38-43	8-10	absent	4-6	0	15-20	18-23	banded	absent
3	C. bugiamapensis	58.6-76.8	65.3-83.0	36-46	6-10	absent	7-11	0-7	15-17	17-20	blotched	absent
4	C. caovansungi	90.4-94	120	38-44	8	6	9	0	22	23-25	banded	present
5	C. cattienensis	43.5-69	51-64.7	28-42	3-8	absent	6-8	0	12-16	14-19	banded	absent
6	C. chungi	66.6-68.5	62.8*-82.2	30-31	4-6	absent	7	6	15-18	17-20	banded	absent
7	C. cryptus	62.5-90.8	63.5-88.4	47-50	absent	absent	9-11	0.	18-19	20-23	banded	absent
8	C. cucdongensis	55.8-65.9	max. 81.3	41-44	5-9	absent	5-6	4-6	13-18	15-20	banded	absent
9	C. culaochamensis	69.8-79.8	89.7-91.2	45-50	absent	absent	7-8	absent	18-19	20-23	banded	absent
10	C. dati	max 70.1	max 57.3	42-48	4-7	3-4 each	5-6	?	?	18-19	blotched	absent
11	C. gialaiensis	50.1-62.8	?	38-45	present	absent	9-10	$0-8$	14-15	15-17	Banded	absent
12	C. huynhi	67.2-79.8	61.5-78.6	43-46	3-5	3-8	7-9	$0-8$ (pitted scales)	14-17	17-21	banded	absent
13	C. irregularis	72-86	66.0-74	38-45	7-8	absent	5-7	0-6	15-16	18-19	blotched	absent
14	C. kingsadai	83-94	$\max 117$	39-46	9-12	3-7	7-9	4-8	19-21	21-25	banded	present
15	C. orlovi	61-77.7	max 71.2	36-39	3-8	absent	5-6	0	15-17	16-19	banded	absent
16	C. phnomchiensis	76.1-80.7	56.9-79.1	45-54	0-8	absent	4-5	$1-7$ pitted	18-20	20-23	banded	Absent
17	C. phumyensis	63.6-66.8	?	33-41	5-7	absent	5-7	6 pitted	18-19	18-21	banded	absent
18	C. phuocbinhensis	46-60.4	76,1	43-47	5	absent	7	0	16-21	17-19	striped/ blotched	absent

TABLE 2. (Continued)

No.	Taxa	SVL	TaL	V	EFS	FP	PP(M)	PP (F)	LD4	LT4	Color patterm of dorsum	Enlarged subcaudals
19	C. pseudoquadrivirgatus	48.6-83.3	55.7-82.3	41-57	absent	absent	5-9	5-10	15-21	16-25	bande/blotched	absent
20	C. raglai	87.5-111.7	113.4-119	36-39	9-10	0	5	0	?	21-22	banded	present
21	C. sangi	49.9-56.3	47.9* but just 15.1 mm original	37	4	Absent	7	4 (Pitted)	?	?	banded	absent
22	C. takouensis	74.7-81.1	77.7-91	39-40	3-5	0-2	3-4	0	16-17	18-20	banded	present
23	C. taynguyenensis	60.0-85.0	66.0-94.0	42-49	absent	absent	6	0	13-18	17-21	blotched	absent
24	C. yangbayensis	78.5-92.3	91.3-109.1	39-46	5-16	0-2	6-8	0	16-19	15-17	banded	Present
25	C. ziegleri	84.6-93.0	95.0-107.0	33-39	8-10	0-6	5-8	0-8	16-19	18-21	banded	Absent

TABLE 3. Morphological comparisons between Cyrtodactylus sp. nov. and and its other congeners from Vietnam (after Smith 1921b; Ziegler et al. 2002, 2010; Nguyen et al. 2006, 2014; Hoang et al. 2007; Ngo 2008, 2011; Ngo et al. 2008, 2010; Chan \& Norhayati 2010; Ngo \& Grismer 2010, 2012; Luu et al. 2011; Ngo \& Chan 2011; Nguyen et al. 2015, 2017; Le et al. 2016, 2021; Pham et al. 2017, 2019; Murdoch et al. 2019).

No.	Taxa	SVL	TaL	V	EFS	FP	PP(M)
1	Cyrtodactylus tayhoaensis sp. nov.	82.9-94.2	max 104.3	37-41	10-11	3-7 males	4-5
						0 females	
2	C. badenensis	59.3-74.1	58.6-82.4	25-28	absent	absent	0
3	C. bichnganae	95.3-99.9	96.6*-115.6	30-31	11-13	18	10
4	C. bobrovi	75.2-96.4	max 95.4	40-45	absent	0	5
5	C. chauquangensis	90.95-99.3	97-108.3	36-38	absent	absent	6-7
6	C. condorensis	80	100	35-40	present	?	4-7
7	C. cucphuongensis	96	79.3*	42	14	absent	0
8	C. eisenmanae	76.8-89.2	91-103.8	44-45	4-6	absent	0
9	C. grismeri	68.3-95	111.3-115.1	33-38	0-3	0	0
10	C. hontreensis	72.4-88.9	84.2-106.5	40-42	2-5	absent	7-8
11	C. huongsonensis	73.4-89.8	90.5	41-48	7-9 each	7-8 each	6
12	C. intermedius	61.0-85.0	80.0-100.0	40-50	6-10	?	8-10
13	C. leegrismeri	80.6-92	58-99	27-35	present	absent	4
14	C. martini	64.4-96.2	76-101.2	39-43	14-18	absent	4
15	C. nigriocularis	82.7-107.5	70.6-121	42-49	absent	absent	0-2
16	C. ngati	66.5-69.3	74.1-83.2	32-38	present	14	13
17	C. otai	85.2-90.6	89.7-97.6	38-43	absent	0	7-8
18	C. phongnhakebangensis	78.5-96.3	98-110	32-42	present	present	$\begin{aligned} & 33-42 \\ & (\mathrm{PP}+\mathrm{FP}) \end{aligned}$
19	C. phuquocensis	62.2-85.8	80.5-103.1	38-43	10-11	absent	7-9
20	C. puhuensis	79.24	82.59	36	?	absent	5
21	C. roesleri	51.1-75.3	63.4-101	34-40	7-10	present	20-28
22	C. septimontium	59.5-90.4	85-119	37-46	24-33	?	7-8
23	C. soni	88.7-103	70.6-113	41-45	8-11	6-8	6-7
24	C. sonlaensis	63.1-83.2	89.8-103	34-42	15-17	14-15	8
25	C. taybacensis	77.6-97.5	97.1-104.1	30-38	11-14	Absent	11-13

TABLE 3. (Continued)

No.	Taxa	PP (F)	LD4	LT4	Color patterm of dorsum	Enlarged subcaudals
1	Cyrtodactylus tayhoaensis sp. nov.	0	20-22	22-24	banded	present
2	C. badenensis	0	-	18-22	banded	present
3	C. bichnganae	8	18-20	16-20	banded	present
4	C. bobrovi	0	19-21	21-22	banded	absent
5	C. chauquangensis	6-7	16-18	19-23	banded	present
6	C. condorensis	?	?	?	blotched	present
7	C. cucphuongensis	?	21	24	banded	present
8	C. eisenmanae	0	18-20	17-18	banded	present
9	C. grismeri	0	16-18	16-19	banded	present
10	C. hontreensis	0	16	17-19	banded	present
11	C. huongsonensis	8	17-19	20-23	banded	present
12	C. intermedius	?	?	22	banded	present
13	C. leegrismeri	0	-	18-20	blotched	present
14	C. martini	0	19-23	22-24	banded	absent
15	C. nigriocularis	0	-	17-21	Unifomly brown	present
16	C. ngati	0	16-17	12-17	banded	?
17	C. otai	0	16-19	19-22	banded	absent
18	C. phongnhakebangensis	0-41 (PP+FP)	15-20	18-26	banded	present
19	C. phuquocensis	0-8 pitted	?	15-18	banded	present
20	C. puhuensis	?	18	23	banded	present
21	C. roesleri	17-22	17-19	17-21	banded	present
22	C. septimontium	6-8	?	17-20	Banded	?
23	C. soni	7-8	15-19	18-22	banded	present
24	C. sonlaensis	0	17-19	18-21	Banded	Present
25	C. taybacensis	5-15 (Pitted)	17-19	16-20	Banded	Present

uncontinuous white vertebral line extending from neck to base of tail (versus absent in C. kingsadai); from C. bidoupimontis Nazarov, Poyarkov, Orlov, Phung, Nguyen, Hoang \& Ziegler by having a longer tail length (101.8104.3 mm , mean ratio TL/SVL 1.20 versus $75-86 \mathrm{~mm}$, ratio TL/SVL 1.05 in C. bidoupimontis), fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 166-198 in C. bidoupimontis), the presence of femoral pores in males (3-7 versus absent in C. bidoupimontis), differences in dorsal color pattern (thinner nuchal band, divided with V-shape or triangle shape in the middle versus posteriorly distinctly widened nuchal band in C. bidoupimontis), and the presence of transversely enlarged subcaudal plates (versus absent in C. bidoupimontis); from C. bugiamapensis Nazarov, Poyarkov, Orlov, Phung, Nguyen, Hoang \& Ziegler by having a larger size (SVL 82.9-94.2 mm versus 58.6-76.8 mm in C. bugiamapensis), fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 164-205 in C. bugiamapensis), the presence of femoral pores in males (3-7 versus absent in C. bugiamapensis), fewer precloacal pores in males ($4-5$ versus $7-8$ in C. bugiamapensis), more lamellae under finger IV (20-22 versus 15-17 in C. bugiamapensis) and under toe IV (22-24 versus 17-20 in C. bugiamapensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. bugiamapensis); from C. caovansungi Orlov, Nguyen, Roman, Natalia \& Nguyen by having fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 162-187 in C. caovansungi), more dorsal tubercle rows (20-22 versus 16-18 in C. caovansungi), more enlarged femoral scales ($10-11$ versus 8 in C. caovansungi), fewer precloacal pores in males ($4-5$ versus 9 in C. caovansungi), and differences in dorsal color pattern (nuchal band thinner, divided with V-shape or triangle shape in the middle versus well developed, continuous nuchal band in C. caovansungi); from C. cattienensis Geissler, Nazarov, Orlov, Böhme, Phung, Nguyen \& Ziegler by having a larger size (SVL 82.9-94.2 mm versus $43.5-69.0 \mathrm{~mm}$ in C. cattienensis), more enlarged femoral scales ($10-11$ versus 3-8 in C. cattienensis), the presence of femoral pores in males (3-7 versus absent in C. cattienensis), fewer precloacal pores in males (4-5 versus 6-8 in C. cattienensis), more lamellae under finger IV (20-22 versus 12-16 in C. cattienensis) and under toe IV (22-24 versus 14-19 in C. cattienensis), differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. cattienensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. cattienensis); from C. chungi Ostrowski, Le, Ngo, Pham, Phung, Nguyen \& Ziegler by having a larger size (SVL 82.9-94.2 mm versus $66.6-68.5 \mathrm{~mm}$ in C. chungi), more ventral scale rows ($37-41$ versus $30-31$ in C. chungi), more dorsal tubercle rows ($20-22$ versus $17-18$ in C. chungi), more enlarged femoral scales (10-11 versus 4-6 in C. chungi), the presence of femoral pores in males (3-7 versus absent in C. chungi), fewer precloacal pores in males ($4-5$ versus 7 in C. chungi), the absence of precloacal pores in females (versus 6 in C. chungi), more lamellae under finger IV (20-22 versus 15-18 in C. chungi), and under toe IV (22-24 versus 17-20 in C. chungi), differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. chungi), and the presence of transversely enlarged subcaudal plates (versus absent in C. chungi); from C. cryptus Heidrich, Rösler, Vu, Böhme \& Ziegler by having fewer ventral scale rows (38-41 versus 47-50 in C. cryptus), the presence of enlarged femoral scales (10-11 versus absent in C. cryptus), the presence of femoral pores in males ($3-7$ versus absent in C. cryptus), fewer precloacal pores in males (4-5 versus 9-11 in C. cryptus), more lamellae under finger IV (20-22 versus 18-19 in C. cryptus), and the presence of transversely enlarged subcaudal plates (versus absent in C. cryptus); from C. cucdongensis Schneider, Phung, Le, Nguyen \& Ziegler by having a larger size (SVL 82.9-94.2 mm versus $55.8-65.9 \mathrm{~mm}$ in C. cucdongensis), higher dorsal tubercle rows (20-22 versus 16-19 in C. cucdongensis), the presence of femoral pores in males (3-7 versus absent in C. cucdongensis), the absence of precloacal pores in females (versus 4-6 in C. cucdongensis), more lamellae under finger IV (20-22 versus 13-18 in C. cucdongensis) and under toe IV (22-24 versus 15-20 in C. cucdongensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. cucdongensis); from C. culaochamensis Ngo, Grismer, Pham \& Wood by having a larger size (SVL 82.9-94.2 mm versus 69.8-79.8 mm in C. culaochamensis), fewer ventral scale rows (37-41 versus 45-50 in C. culaochamensis), the presence of enlarged femoral scales (10-11 versus absent in C. culaochamensis), the presence of femoral pores in males (3-7 versus absent in C. culaochamensis), fewer precloacal pores in males ($4-5$ versus 7-8 in C. culaochamensis), and more lamellae under finger IV (20-22 versus 18-19 in C. culaochamensis); from C. dati Ngo by having a larger size (SVL 82.9-94.2 mm versus max $70.1 \mathrm{in} \mathrm{C}. \mathrm{dati)} ,\mathrm{a} \mathrm{longer} \mathrm{tail} \mathrm{length} \mathrm{(101.8-104.3} \mathrm{mm} ,\mathrm{mean} \mathrm{ratio} \mathrm{TL/SVL} 1.20$ versus Max 57.3 mm , mean ratio TL/SVL: 1.06), fewer ventral scale rows (38-41 versus 42-48 in C. dati), more enlarged femoral scales (10-11 versus 4-7 in C. dati), more lamellae under toe IV (22-24 versus 18-19 in C. dati), and differences in dorsal color pattern (banded versus small blotched in C. dati), and the presence of transversely enlarged subcaudal plates (versus absent in C. dati); from C. gialaiensis Luu, Tran, Nguyen, Le \& Ziegler by having
a larger size (SVL 82.9-94.2 mm versus $50.1-62.8 \mathrm{~mm}$ in C. gialaiensis), fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 165-178 in C. gialaiensis), the presence of femoral pores in males (3-7 versus absent in C. gialaiensis), fewer precloacal pores in males ($4-5$ versus $9-10$ in C. gialaiensis), the absence of precloacal pores in adult females (versus 8 pitted scales in C. gialaiensis), more lamellae under finger IV (20-22 versus $14-15$ in C. gialaiensis) and under toe IV (22-24 versus $15-17$ in C. gialaiensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. gialaiensis); from C. huynhi Ngo \& Bauer by having a larger size (SVL 82.9-94.2 mm versus $68.5-79.8 \mathrm{~mm}$ in C. huynhi), fewer ventral scale rows (37-41 versus 43-46 in C. huynhi), more dorsal tubercle rows (20-22 versus 16-18 in C. huynhi), more enlarged femoral scales (10-11 versus 3-5 in C. huynhi), fewer precloacal pores in males (4-5 versus 7-9 in C. huynhi), more lamellae under finger IV (20-22 versus 14-17 in C. huynhi) and under toe IV (22-24 versus 17-21 in C. huynhi), differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. huynhi), and the presence of transversely enlarged subcaudal plates (versus absent in C. huynhi); from C. irregularis (Smith) by having more enlarged femoral scales ($10-11$ versus $7-8$ in C. irregularis), the absence of precloacal pores in females (0 versus $0-6$ in C. irregularis), more lamellae under finger IV ($20-22$ versus $15-16$ in C. irregularis) and under toe IV (22-24 versus 18-19 in C. irregularis), differences in dorsal color pattern (banded versus blotched in C. irregularis), and the presence of transversely enlarged subcaudal plates (versus absent in C. irregularis); from C. orlovi Do, Phung, Ngo, Le, Ziegler, Pham \& Nguyen by having a larger size (SVL 82.9-94.2 mm versus 61-77.7 mm in C. orlovi), more enlarged femoral scales (10-11 versus 3-8 in C. orlovi), the presence of femoral pores in males (3-7 versus absent in C. orlovi), more lamellae under finger IV ($20-22$ versus $15-17$ in C. orlovi) and under toe IV (22-24 versus 16-19 in C. orlovi), differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. orlovi), and the presence of transversely enlarged subcaudal plates (versus absent in C. orlovi); from C. phnomchiensis Neang, Henson \& Stuart by having a larger size (SVL 82.9-94.2 mm versus $76.1-80.7 \mathrm{~mm}$ in C. phnomchiensis), a longer tail (101.8-104.3 mm, mean ratio TL/SVL 1.20 versus $56.9-79.1 \mathrm{~mm}$, mean ratio TL/SVL 0.88 in C. phnomchiensis), fewer ventral scale rows (37-41 versus 45-54 in C. phnomchiensis), more enlarged femoral scales (10-11 versus $0-8$ in C. phnomchiensis), the presence of femoral pores in males ($3-7$ versus absent in C. phnomchiensis), the absence of precloacal pores in females (versus 1-7 pitted scales in C. phnomchiensis), differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. phnomchiensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. phnomchiensis); from C. phumyensis Ostrowski, Le, Ngo, Pham, Phung, Nguyen \& Ziegler by having a larger size (SVL 82.9-94.2 mm versus 63.6-66.8 mm in C. phumyensis), more enlarged femoral scales (10-11 versus 5-7 in C. phumyensis), the presence of femoral pores in males (3-7 versus absent in C. phumyensis), the absence of precloacal pores in females (versus 6 pitted scales in C. phumyensis), more lamellae under finger IV (20-22 versus 18-19 in C. phumyensis) and under toe IV (22-24 versus 18-21 in C. phumyensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. phumyensis); from C. phuocbinhensis Nguyen, Le, Tran, Orlov, Lathrop, Macculloch, Le, Jin, Nguyen, Nguyen, Hoang, Che, Murphy \& Zhang by having a larger size (SVL $82.9-94.2 \mathrm{~mm}$ versus $46.0-60.4 \mathrm{~mm}$ in C. phuocbinhensis), fewer ventral scale rows (37-41 versus 43-47 in C. phuocbinhensis), more enlarged femoral scales (10-11 versus 5 in C. phuocbinhensis), the presence of femoral pores in males (3-7 versus absent in C. phuocbinhensis), fewer precloacal pores in males ($4-5$ versus 7 in C. phuocbinhensis), more lamellae under toe IV (22-24 versus 17-19 in C. phuocbinhensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. phuocbinhensis); from C. pseudoquadrivirgatus Rösler, Vu, Nguyen, Ngo \& Ziegler by having the presence of enlarged femoral scales (10-11 versus absent in C. pseudoquadrivirgatus), the presence of femoral pores in males (3-7 versus absent in C. pseudoquadrivirgatus), the absence of precloacal pores in females (versus 5-10 in C. pseudoquadrivirgatus), and the presence of transversely enlarged subcaudal plates (versus absent in C. pseudoquadrivirgatus); from C. raglai Nguyen, Duong, Grismer \& Poyarkov by having a shorter tail (101.8-104.3 mm, mean ratio TL/SVL 1.20 versus 119-135 mm, mean ratio TL/SVL 1.25 in C. raglai), the presence of femoral pores in males (3-7 versus absent in C. raglai), more dorsal tubercle rows (20-22 versus 14-15 in C. raglai), the presence of raised, moderately to strongly keeled body tubercles (versus low, weakly keeled body tubercles in C. raglai), and differences in dorsal color pattern (nuchal band divided with V-shape or triangle shape in the middle versus continuous nuchal band in C. raglai); from C. sangi Pauwels, Nazarov, Bobrov \& Poyarkov by having a larger size (SVL 82.9-94.2 mm versus 49.9-56.3 mm in C. sangi), more enlarged femoral scales ($10-11$ versus 4 in C. sangi), the presence of femoral pores in males ($3-7$ versus absent in C. sangi), fewer precloacal pores in males ($4-5$ versus 7 in C. sangi), the
absence of precloacal pores in females (versus 4 pitted scales in C. sangi), and the presence of transversely enlarged subcaudal plates (versus absent in C. sangi); from C. takouensis Ngo \& Bauer by having a larger size (SVL 82.994.2 mm versus $74.7-81.1 \mathrm{~mm}$ in C. takouensis), more enlarged femoral scales (10-11 versus 3-5 in C. takouensis), more femoral pores in males (3-7 versus $0-2$ in C. takouensis), more lamellae under finger IV (20-22 versus 16-17 in C. takouensis) and under toe IV (22-24 versus 18-20 in C. takouensis); from C. taynguyenensis Nguyen, Le, Tran, Orlov, Lathrop, Macculloch, Le, Jin, Nguyen, Nguyen, Hoang, Che, Murphy \& Zhang by fewer ventral scale rows (38-41 versus 42-49 in C. taynguyenensis), the presence of enlarged femoral scales (10-11 versus absent in C. taynguyenensis), the presence of femoral pores in males ($3-7$ versus absent in C. taynguyenensis), fewer precloacal pores in males (4-5 versus 6 in C. taynguyenensis), more lamellae under finger IV (20-22 versus 13-18 in C. taynguyenensis) and under toe IV (22-24 versus 17-21 in C. taynguyenensis), and the presence of transversely enlarged subcaudal plates (versus absent in C. taynguyenensis); from C. yangbayensis Ngo \& Chan by having more femoral pores in males (3-7 versus 0-2 in C. yangbayensis), fewer precloacal pores in males (4-5 versus 6-8 in C. yangbayensis), more lamellae under finger IV (20-22 versus 16-19 in C. yangbayensis) and under toe IV (22-24 versus 15-27 in C. yangbayensis); from C. ziegleri Nazarov, Orlov, Nguyen \& Ho by having fewer scales along the midbody from mental to anterior edge of cloaca (140-157 versus 173-198 in C. ziegleri), the absence of precloacal pores in females (versus 0-8 in C. ziegleri), more lamellae under finger IV (20-22 versus 16-19 in C. ziegleri) and under toe IV (22-24 versus 18-21 in C. ziegleri), and the presence of transversely enlarged subcaudal plates (versus absent in C. ziegleri).

Discussion

Our discovery brings the number of bent-toed geckos reported to occur in Vietnam to 49 species (Ngo et al. 2022; Uetz et al. 2022). It further represents the 25th species of the Cyrtodactylus irregularis species group. In our phylogenetic analyses, the new species is placed as a sister taxon to C. kingsadai, the second species of the genus known from Phu Yen Province. Both species inhabit evergreen forest on granite rock. However, C. kingsadai has been recorded from big rocks at $50-100 \mathrm{~m}$ a.s.l., whereas Cyrtodactylus tayhoaensis sp. nov. has been found on smaller rocks along streams at 130-230 m a.s.l. The two species thus seem to occupy different microhabitats. Both sister taxa can also be well differentiated based on morphological and molecular distinctiveness. They are most closely related to C. raglai from neighboring Khanh Hoa Province (Fig. 2; Nguyen et al. 2021). Our field observations suggest that Cyrtodactylus tayhoaensis sp. nov. is under threat of habitat loss and degradation. Evergreen forests have been converted to agriculture land at the site and logging activities have polluted streams where the species lives. More assessments need to be undertaken to evaluate the population status and the level of threats the species is facing.

Acknowledgments

We are grateful to the directorates of the Forest Protection Department of Phu Yen Province for their support of our work. For the fruitful cooperation within joint research projects, we cordially thank S.V. Nguyen (IEBR, Hanoi), as well as T. Pagel and C. Landsberg (Cologne Zoo). We would like to thank the local people in Son Thanh Tay Commune, Tay Hoa District for their assistance in the field and H. N. Ngo (IGR, Hanoi) for assisted laboratory work. We thank T. A. Tran (IEBR, Hanoi) for providing the map. This research is funded by the National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 106.05-2020.02 and the Rufford Foundation (Grant No. 39056-1) to C.T. Pham.

References

Chan, K.O \& Grismer, L.L. (2022) GroupStruct: An R package for allometric size correction. Zootaxa, 5124, 471-482. https://doi.org/10.11646/zootaxa.5124.4.4
Chan, K.O. \& Norhayati, A. (2010) A new insular species of Cyrtodactylus (Squamata: Gekkonidae) from northeastern Peninsular Malaysia, Malaysia. Zootaxa, 2389 (1), 47-56.
https://doi.org/10.11646/zootaxa.2389.1.2

Darriba, D., Taboada, G.L., Doallo, R. \& Posada, D. (2012) jmodelTest 2: More models, new heuristicsand high-performance computing. Nature Methods, 9 (8), e772.
https://doi.org/10.1038/nmeth. 2109
Do, Q.H., Phung, T.M., Ngo, H.T., Le, M.D., Ziegler, T., Pham, C.T. \& Nguyen, T.Q. (2021) A new species of Cyrtodactylus (Squamata: Gekkonidae) from Ninh Thuan Province, southern Vietnam. Zootaxa, 4999 (1), 58-76. https://doi.org/10.11646/zootaxa.4999.1.4
Duong, T.V., Do, D.T., Ngo, C.D., Nguyen, T.Q. \& Poyarkov, N.A. (2018) A new species of the genus Leptolalax (Anura: Megophryidae) from southern Vietnam. Zoological Research/Dôngwùxu yánjiü. Kunming, 39, 181-196. https://doi: 10.24272/j.issn.2095-8137.2018.009.
Geissler, P., Nazarov, R., Orlov, N.L., Böhme, W., Phung, T.M., Nguyen, T.Q. \& Ziegler, T. (2009) A new species of the Cyrtodactylus irregularis complex (Squamata: Gekkonidae) from southern Vietnam. Zootaxa, 2161 (1), 20-32. https://doi.org/10.11646/zootaxa.2161.1.2
Grismer, L.L., Suwannapoom, C., Pawangkhanant, P., Nazarov, R.A., Yushchenko, P.V., Naiduangchan, M., Le, M.D., Luu, V.Q. \& Poyarkov, N.A. (2021b) A new cryptic arboreal species of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) from the uplands of western Thailand. Vertebrate Zoology, 71, 723-746. https://doi.org/10.3897/vz.71.e76069
Grismer, L.L., Wood, P.L., Poyarkov, N.A., Le, M.D., Kraus, F., Agarwal, I., Oliver, P.M., Nguyen, S.N., Nguyen, T.Q., Karunarathna, S., Welton, L.J., Stuart, B.L., Luu, V.Q., Bauer, A., O’Connell, K.A., Quah, E.S.H., Chan, K.O., Ziegler, T., Ngo, H.T., Nazarov, R.A., Aowphol, A., Chomdej, S., Suwannapoon, C., Siler, C.D., Anuar, S., Tri, N.V. \& Grismer, J.L. (2021a) Phylogenetic partitioning of the third-largest vertebrate genus in the world, Cyrtodactylus Gray, 1827 (Reptilia; Squamata; Gekkonidae) and its relevance to taxonomy and conservation. Vertebrate Zoology, 71, 101-154. https://doi.org/10.3897/vz.71.e59307
Heidrich, A., Rösler, H., Vu, N.T., Böhme, W. \& Ziegler, T. (2007) Another new Cyrtodactylus (Squamata: Gekkonidae) from Phong Nha-Ke Bang National Park, central Truong Son, Vietnam. Zootaxa, 1445 (1), 35-48. https://doi.org/10.11646/zootaxa.1445.1.3
Hillis, D.M. \& Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42 (2), 182-192. https://doi. org/10.1093/sysbio/42.2.182
Hoang, Q.X., Orlov, N.L., Ananjeva, N.B., Johns, A.G., Hoang, T.N. \& Dau, V.Q. (2007) Description of a new species of the genus Cyrtodactylus Gray, 1827 (Squamata: Sauria: Gekkonidae) from the karst of North Central Vietnam. Russian Journal of Herpetology, 14, 98-106.
Ivanova, N.V., Dewaard, J.R. \& Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering highquality DNA. Molecular Ecology, 6, 998-1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
Kassambara, A. \& Mundt, F. (2017) Factoextra: extract and visualize the result of multivariate data analyses. R package, version 1.0.5.999.

Le, D.T., Nguyen, T.Q., Le, M.D. \& Ziegler, T. (2016) A new species of Cyrtodactylus (Squamata: Gekkonidae) from Ninh Binh Province, Vietnam. Zootaxa, 4162 (2), 268-282. https://doi.org/10.11646/zootaxa.4162.2.4
Le, D.T., Sitthivong, S., Tran, T.T., Grismer, L.L., Nguyen, T.Q., Le, M.D., Ziegler, T. \& Luu, V.Q. (2021) First record of the Cyrtodactylus brevipalmatus group (Squamata: Gekkonidae) from Vietnam with description of a new species. Zootaxa, 4969 (3), 492-510 https://doi.org/10.11646/zootaxa.4969.3.3
Le, S., Josse, J. \& Husson, F. (2008). "FactoMineR: A Package for Multivariate Analysis." Journal of Statistical Software, 25 (1), 1-18. https://doi.org/10.18637/jss.v025.i01
Lleonart, J., Salat, J. \& Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85-93. https://doi.org/10.1006/jtbi.2000.2043
Luu, V.Q., Dung, T.V., Nguyen, T.Q., Le, M.D. \& Ziegler, T. (2017) A new species of the Cyrtodactylus irregularis complex (Squamata: Gekkonidae) from Gia Lai Province, Central Highlands of Vietnam. Zootaxa, 4362 (3), 385-404. https://doi.org/10.11646/zootaxa.4362.3.4
Luu V.Q., Nguyen T.Q., Do H.Q. \& Ziegler T. (2011) A new Cyrtodactylus (Squamata: Gekkonidae) from Huong Son limestone forest, Hanoi, northern Vietnam. Zootaxa, 3129 (1): 39-50. https://doi.org/10.11646/zootaxa.3129.1.3
Minh, B.Q., Nguyen, M.A.T. \& von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188-1195. https://doi.org/10.1093/molbev/mst024
Murdoch, M.L., Grismer, L.L., Wood, P.L. Jr., Neang, T., Poyarkov, N.A., Ngo, V.T., Nazarov, R.A., Aowphol, A., Pauwels, O.S.G., Nguyen, H.N. \& Grismer, J.L. (2019) Six new species of the Cyrtodactylus intermedius complex (Squamata: Gekkonidae) from the Cardamom Mountains and associated highlands of Southeast Asia. Zootaxa, 4554 (1), 001-062. h ttps://doi.org/10.11646/zootaxa.4554.1.1

Nazarov, R.A., Orlov, N.L., Nguyen, N.S. \& Ho, T.C. (2008) Taxonomy of naked-toe geckos Cyrtodactylus irregularis complex of South Vietnam and description of a new species from Chu Yang Sin Natural Park (Krong Bong District, Dac Lac Province), Vietnam. Russian Journal of Herpetology, 15, 141-156.
Nazarov, R., Poyarkov, N.A., Orlov, N.L., Phung, T.M., Nguyen, T.T., Hoang, D.M. \& Ziegler, T. (2012) Two new cryptic species of the Cyrtodactylus irregularis complex (Squamata: Gekkonidae) from southern Vietnam. Zootaxa, 3302 (1), $1-24$. https://doi.org/10.11646/zootaxa.3302.1.1
Neang, T., Henson, A. \& Stuart, B.L. (2020) A new species of Cyrtodactylus (Squamata, Gekkonidae) from Cambodia’s Prey Lang Wildlife Sanctuary. ZooKeys, 926, 133-158.
https://doi.org/10.3897/zookeys.926.48671
Ngo, H.T., Do, Q.H., Pham, C.T., Luu, V.Q., Grismer, L.L., Ziegler, T., Nguyen, V.T.H., Nguyen, T.Q. \& Le, M.D. (2022) How many more species are out there? Current taxonomy seriously underestimates the diversity of bent-toed geckos (genus Cyrtodactylus) in Laos and Vietnam. ZooKeys, 1097, 135-152. https://doi.org/10.3897/zookeys.1097.78127
Ngo, T.V. (2008) Two new cave-dwelling species of Cyrtodactylus Gray (Squamata: Gekkonidae) from Southwestern Vietnam. Zootaxa, 1909 (1), 37-51. https://doi.org/10.11646/zootaxa.1909.1.4
Ngo, T.V. (2011) Cyrtodactylus martini, another new karst-dwelling Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) from Northwestern Vietnam. Zootaxa, 2834 (1), 33-46. https://doi.org/10.11646/zootaxa.2834.1.3
Ngo, T.V. (2013) Cyrtodactylus dati, a new forest dwelling Bent-toed Gecko (Squamata: Gekkonidae) from southern Vietnam. Zootaxa, 3616 (2), 151-164. https://doi.org/10.11646/zootaxa.3616.2.4
Ngo, T.V. \& Bauer, A.M. (2008) Descriptions of two new species of Cyrtodactylus Gray 1827 (Squamata: Gekkonidae) endemic to southern Vietnam. Zootaxa, 1715 (1), 27-42. https://doi.org/10.11646/zootaxa.1715.1.2
Ngo, T.V. \& Chan, K.O. (2010) A new species of Cyrtodactylus Gray, 1826 (Squamata: Gekkonidae) from Khanh Hoa province, southern Vietnam. Zootaxa, 2504 (1), 47-60. https://doi.org/10.11646/zootaxa.2504.1.4
Ngo, T.V. \& Chan K.O. (2011) A new karstic cave-dwelling Cyrtodactylus Gray (Squamata: Gekkonidae) from Northern Vietnam. Zootaxa, 3125 (1), 51-63. https://doi.org/10.11646/zootaxa.3125.1.4
Ngo, T.V. \& Grismer, L.L. (2010) A new karst dwelling Cyrtodactylus (Squamata: Gekkonidae) from Son La Province, northwestern Vietnam. Hamadryad, 35, 84-95.
https://doi.org/10.11646/zootaxa.3835.1.4
Ngo, T.V. \& Grismer, L.L. (2012) A new endemic species of Cyrtodactylus Gray (Squamata: Gekkonidae) from Tho Chu Island, southwestern Vietnam. Zootaxa, 3228 (1), 48-60. https://doi.org/10.11646/zootaxa.3228.1.2
Ngo, T.V., Grismer, L.L. \& Grismer, J.L. (2008) A new endemic cave dwelling species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) in Kien Giang Biosphere Reserve, Southwestern Vietnam. Zootaxa, 1967 (1), 53-62. https://doi.org/10.11646/zootaxa.1967.1.3
Ngo, T.V., Grismer, L.L. \& Grismer, J.L. (2010) A new species of Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) in Phu Quoc National Park, Kien Giang Biosphere Reserve, southwestern Vietnam. Zootaxa, 2604 (1), 37-51. https://doi.org/10.11646/zootaxa.2604.1.3
Ngo, T.V., Grismer, L.L., Pham, H.T. \& Wood, Jr.PL. (2020) A new endemic insular Bent-toed Gecko (Squamata: Gekkonidae:) from Quang Nam Province, Central Vietnam. Zootaxa, 4766 (2), 389-400. https://doi.org/10.11646/zootaxa.4766.2.7
Nguyen, A.T., Duong, T.V., Grismer, L.L. \& Poyarkov, N.A. (2021) A new granite cave-dwelling Bent-toed Gecko from Vietnam of the Cyrtodactylus irregularis group (Squamata; Gekkonidae) and a discussion on cave ecomorphology. Vertebrate Zoology, 71, 155-174. https://doi.org/10.3897/vz.71.e60225
Nguyen, L.T., Do, D.T., Hoang, H.V., Nguyen, T.T., McCormack, T.E.M., Nguyen, T.Q., Orlov, N.L., Nguyen, V.D.H. \& Nguyen, S.N. (2018) A New Species of the Genus Acanthosaura Gray, 1831 (Reptilia: Agamidae) from Central Vietnam. Russian Journal of Herpetology, 25 (4), 259-274. https://doi.org/10.30906/1026-2296-2018-25-4-259-274
Nguyen, L.T., Schmidt, H.A., von Haeseler, A. \& Bui, M.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268-274.
https://doi.org/10.1093/molbev/msu300
Nguyen, S.N., Le, T.T., Tran, T.A.D., Orlov, N.L., Lathrop, A., MacCulloch, R.D., Le, T.-D.T., Jin, J.-Q., Nguyen, L.T., Nguyen, T.T., Hoang, D.D., Che, J., Murphy, R.W. \& Zhang, Y.P. (2013) Phylogeny of the Cyrtodactylus irregularis species complex (Squamata: Gekkonidae) from Vietnam with the description of two new species. Zootaxa, 3737 (4), 399-414.
https://doi.org/10.11646/zootaxa.3737.4.4
Nguyen, S.N., Orlov N.L. \& Darevsky, S.I. (2006) Descriptions of two new species of the genus Cyrtodactylus Gray, 1827 (Squamata: Sauria: Gekkonidae) from Southern Vietnam. Russian Journal of Herpetology, 13 (3), 215-226.
Nguyen, S.N., Yang, J.-X., Le, N.T.T., Nguyen, L.T., Orlov, N.L., Hoang, C.V., Nguyen, T.Q., Jin, J.-Q., Rao, D.-Q., Hoang, T.N., Che, J., Murphy, R.W. \& Zhang, Y.-P. (2014) DNA barcoding of Vietnamese bent-toed geckos (Squamata: Gekkonidae: Cyrtodactylus) and the description of a new species. Zootaxa, 3784 (1), 48-66. https://doi.org/10.11646/zootaxa.3784.1.2
Nguyen, T.Q., Le, M.D., Pham, A.V., Ngo, H.N., Hoang, C.V., Pham, C.T. \& Ziegler, T. (2015) Two new species of Cyrtodactylus (Squamata: Gekkonidae) from the karst forest of Hoa Binh Province, Viet Nam. Zootaxa, 3985 (3), 375-390. https://doi.org/10.11646/zootaxa.3985.3.3
Nguyen, T.Q, Pham, A.V., Ziegler, T., Ngo, H.T. \& Le, M.D. (2017) A new species of Cyrtodactylus (Squamata: Gekkonidae) and the first record of C. otai from Son La Province, Vietnam. Zootaxa, 4341 (1), 25-40. https://doi.org/10.11646/zootaxa.4341.1.2
Nguyen, V. D. H., Nguyen, L. T., Orlov, N. L., Murphy, R. W. \& Nguyen, S. N. (2021) Gekko phuyenensis sp. nov. (Squamata: Gekkonidae), a new species from southern Vietnam. Zootaxa, 4966 (2), 175-186.
Orlov, N.L., Nguyen, Q.T., Nazarov, R.A., Ananjeva, N.B. \& Nguyen, N.S. (2007) A new species of the genus Cyrtodactylus Gray, 1827 and redescription of Cyrtodactylus paradoxus (Darevsky et Szczerbak, 1997) [Squamata: Sauria: Gekkonidae] from South Vietnam. Russian Journal of Herpetology, 14, 145-152.
Ostrowski, S., Do, D.T., Le, M.D., Ngo, H.T., Pham, C.T., Nguyen, T.Q., Nguyen, V.T.H. \& Ziegler, T. (2020) A new species of Cyrtodactylus (Squamata: Gekkonidae) from southern Vietnam. Zootaxa, 4789 (1), 171-203. https://doi.org/10.11646/zootaxa.4789.1.5
Ostrowski, S., Le, M.D., Ngo, H.T., Phung, T.M., Nguyen, T.Q. \& Ziegler, T. (2021) A new Cyrtodactylus (Squamata: Gekkonidae) from Binh Thuan Province, southern Vietnam. European Journal of Taxonomy, 731, 47-70. https://doi.org/10.5852/ejt.2021.731.1203
Pauwels, O.S G., Nazarov, R.A., Bobrov, V.V. \& Poyarkov, N.A. (2018) Taxonomic status of two populations of Bent-toed Geckos of the Cyrtodactylus irregularis complex (Squamata: Gekkonidae) with description of a new species from Nui Chua National Park, southern Vietnam. Zootaxa, 4403 (2), 307-335. https://doi.org/10.11646/zootaxa.4403.2.5
Pham, A.V, Le, M.D., Ngo, H.T., Ziegler, T. \& Nguyen, T.Q. (2019) A new species of Cyrtodactylus (Squamata: Gekkonidae) from northwestern Vietnam. Zootaxa, 4544 (1), 360-380. https://doi.org/10.11646/zootaxa.4544.3.3
Pham, A.V., Pham, N.V., Nguyen, L.D.T., Le, M.D., Do, Q.H., Pham, N.D. \& Nguyen, T.Q. (2017) Additional morphological characters and molecular divergence of Cyrtodactylus bichnganae (Reptilia: Gekkonidae). Proceedings of the Seventh National Scientific Conference on Ecology and Biological Resources, 2017, pp. 554-561. [in Vietnamese with English abstract]
Pham, C.T., Do, D.T., Le, M.D., Ngo, H.T., Nguyen, L.T., Ziegler, T., \& Nguyen, T.Q. (2020) A new species of Limnonectes (Amphibia: Anura: Dicroglossidae) from Vietnam. Zootaxa, 4894, 387-402. https://doi.org/10.11646/zootaxa.4894.3.5
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. \& Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542. https://doi.org/10.1093/sysbio/sys029
Rösler, H., Vu, T.N., Nguyen, T.Q., Ngo, V.T. \& Ziegler, T. (2008) A new Cyrtodactylus (Squamata: Gekkonidae) from central Vietnam. Hamadryad, 32, 125-140.
Schneider, N., Phung, T.M., Le, M.D., Nguyen, T.Q. \& Ziegler, T. (2014) A new Cyrtodactylus (Squamata: Gekkonidae) from Khanh Hoa Province, southern Vietnam. Zootaxa, 3785 (4), 518-532. https://doi.org/10.11646/zootaxa.3785.4.2
Simmons, J.E. (2002) Herpetological collecting and collections management. Revised edition. Society for the Study of Amphibians and Reptiles, Herpetological Circular, 31, 1-153.
Smith, M.A. (1921a) New or little-known reptiles and batrachians from southern Annam (Indo-China). Proceedings of the Zoological Society of London, 1921, 423-440. https://doi.org/10.1111/j.1096-3642.1921.tb03271.x
Smith, M.A. (1921b) Reptiles and batrachians collected on Pulo Condore. The Journal of the Natural History Society of Siam 4 [1920], 93-97.
Statistical Office of Phu Yen Province (2016) Phu Yen Statistical yearbook 2016. Statistical publishing house.
Swofford, D.L. (2001) PAUP*. Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4. Sinauer Associates, Sunderland, Massachusetts.
Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. \& Higgins, D.G. (1997) The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
Thorpe, R.S. (1975) Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the Ringed Snake Natrix natrix (L.). Biological Journal of the Linnean Society, 7, 27-43.
https://doi.org/10.1111/j.1095-8312.1975.tb00732.x
Thorpe, R.S. (1983) A review of the numerical methods for recognising and analysing racial differentiation. In: Felsenstein J (Ed.), Numerical Taxonomy. NATO ASI Series, Volume 1. Springer, Berlin, Heidelberg, 404-423pp. https://doi.org/10.1007/978-3-642-69024-2_43.
Turan, C. (1999) A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology, 23, 259-263.
Uetz, P., Hallermann, J. \& Hosek, J. (Eds.) (2022) The Reptile Database. http://www.reptile-database.org. (accessed 01 May 2022)

Ziegler, T., Nazarov, R., Orlov, N., Nguyen, T.Q., Vu, T.N., Dang, K.N., Dinh, T.H. \& Schmitz, A. (2010) A third new Cyrtodactylus (Squamata: Gekkonidae) from Phong Nha-Ke Bang National Park, Vietnam. Zootaxa, 2413 (1), 20-36. https://doi.org/10.11646/zootaxa.2413.1.2
Ziegler, T., Phung, T.M., Le, M.D. \& Nguyen, T.Q. (2013) A new Cyrtodactylus (Squamata: Gekkonidae) from Phu Yen Province, southern Vietnam. Zootaxa, 3686 (4), 432-446. https://doi.org/10.11646/zootaxa.3686.4.2
Ziegler, T., Rösler,H.,Herrmann,H.-W. \& Vu, T.N. (2002) Cyrtodactylus phongnhakebangensis sp.n., ein neuer Bogenfingergecko aus dem annamitischen Karstwaldmassiv, Vietnam. Herpetofauna, 24, 11-25.

