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Biologı́a, Universidad de Costa Rica, San José, Costa Rica, 3 Department of Microbiology and Ecosystem

Science, University of Vienna, Vienna, Austria, 4 Institute of Botany, University of Natural Resources and Life

Sciences, Vienna, Austria

* edchacon@gmail.com

Abstract

The reasons why the range size of closely related species often varies significantly have

intrigued scientists for many years. Among other hypotheses, species with high trait varia-

tion were suggested to occupy more diverse environments, have more continuity in their

distributions, and consequently have larger range sizes. Here, using 34 tree species of low-

lands tropical rainforest in southern Costa Rica, we explored whether inherent trait variability

expressed at the local scale in functional traits is related to the species’ total geographical

range size. We formed 17 congeneric pairs of one narrow endemic and one widespread

species, sampled 335 individuals and measured eight functional traits: leaf area, leaf thick-

ness, leaf dry matter content, specific leaf area, leaf nitrogen content, leaf phosphorus con-

tent, leaf nitrogen to phosphorus ratio, and wood specific gravity. We tested whether there

are significant differences in the locally expressed variation of individual traits or in multidi-

mensional trait variance between the species in congeneric pairs and whether species’

range size could hence be predicted from local trait variability. However, we could not find

such differences between widely distributed and narrow range species. We discuss the pos-

sible reasons for these findings including the fact that higher trait variability of widespread

species may result from successive local adaptations during range expansion and may

hence often be an effect rather than the cause of larger ranges.

Introduction

Even closely related species often vary in range size by orders of magnitude [1]. The reasons of

this variation have intrigued scientists for many years [1,2]. Nevertheless, why some species

are narrowly distributed endemics, while other related species have spread widely is still a puz-

zling question with probably complex causation [3–6]. Species can, for example, occupy a nar-

row range because they have not had the chance to disperse after a range collapse following

e.g. climatic changes [7], are evolutionary young [1], limited to isolated places like oceanic

islands or mountain peaks [8], or adapted to rare habitat types [9]. However, many species are

range-restricted even without (evident) geographic barriers limiting their distributions [10–

12], suggesting that factors other than dispersion are involved in shaping their ranges.
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Biological traits determine the ecological niches of species and hence control the composi-

tion of ecological communities along environmental gradients [13–15]. Indeed, trait variation

across geographical ranges of a species often co-varies with components of the physical envi-

ronment such as soil and climate, likely reflecting environmental filtering of particular trait

values [16,17]. As a corollary, high intra-specific variation in relevant functional traits, whether

due to genetic diversity or phenotypic plasticity, should be associated with broad environ-

mental tolerance and / or the ability to exploit a greater variety of resources. These attributes

should, in turn, allow species to occupy more diverse environments and thus, eventually, larger

ranges [4,6,18,19]. However, intra-specific trait variation is often geographically structured

[20–22], among other things as a result of the adaptation of individual populations to the

new environments they face with range expansion [23–25]. It is thus unclear whether trait var-

iability is actually a determinant or merely a consequence of range size [6]. In other words,

endemic species may be endemic because they have lower trait variability than their wide-

spread relatives, or they may have lower trait variability because they are endemic. This ques-

tion cannot be resolved by comparing trait variation of narrow and wide range species across

their entire respective ranges. However, if geographical area is fixed, the range of environmen-

tal variation is similar between the species to be compared. In addition, if we focus on regional

population only in such a comparison, continued gene flow is more likely to restrict the effects

of local adaptation on intra-specific trait variability for the species to be compared [26]. In

such a case, higher trait variability in widespread species would hence actually indicate that

this variability is a driver rather than a consequence of range size differences.

Here, we compare intra-population variability in functional traits among congeneric pairs

of endemic and widespread tree species that co-occur in a restricted region of southern Costa

Rica. Tropical tree species offer an appropriate system for studying these questions because

they show significant variation in range sizes [27] as well as pronounced inter- and intraspe-

cific variation in functional traits [14]. Nevertheless, the relationship between range size and

trait variation has rarely been considered in this group of species [28]. We explore the variabil-

ity in leaf area, leaf thickness, leaf dry matter content, specific leaf area, leaf nitrogen content,

leaf phosphorus content, leaf nitrogen-to-phosphorus ratio and wood specific gravity. These

traits have been shown to be strongly related to the economic spectrum of plants [29,30], some

of them have also been used as predictors of tolerance to abiotic and biotic stressors such as

drought, nutrient-poor soils, shade, fire and competition, and vary across environmental gra-

dients [31–38]. Following the rationale outlined above, we expect that widespread species will

be more variable in individual functional traits and in multivariable trait space than narrow

range species. We use congeneric pairs of wide- and narrow-range species in our comparison

to exclude confounding phylogenetic constraints on functional trait variability [39].

Materials and methods

Study site

Sample collection was allowed under INV-ACOSA-018-14 permission granted by SINAC (Sis-

tema Nacional de Áreas de Conservación, Costa Rica).We worked on the Peninsula de Osa

and Golfo Dulce area of southern Costa Rica, in the surroundings of four field stations (8˚16’-

8˚55’ N, 83˚ 4’-83˚47 W, Fig 1). Rainfall in the region is between 2800 and 5400 mm/year [40]

and mean annual temperature is c. 27˚C in the lowlands. There is a short dry season between

January and March with occasional rains. On average, 90% of the rain falls between April and

December (Fig 1).

High diversity and high levels of endemism characterise the region where more than 2700

vascular plant species have been recorded [41] of which approx. 150 are endemics [42]. The
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area is particularly recognised for its high richness of trees and palms, with ca. 750 species of

trees and 47 species of palms [43]. Floristic affinities are strongest with South American low-

land rainforests, especially the northwest of South America [44].

A complex geological history has formed the region since the Late Cretaceous resulting in a

landscape with mountains deeply incised by river valleys, hills, terraces, plains and swamps

[45]. The causes of speciation and endemism in the region are difficult to disentangle [45].

Compared with the surroundings, the region has a distinct climate because the Talamanca

Cordillera towards the North, with mountains as high as 3820 m, creates a vortex effect that

increases precipitation and decreases rainfall seasonality [46]. The wetter conditions may have

attenuated the climatic fluctuations of the Late Pleistocene [47] and thus probably enhanced

chances of in-situ survival for species of the regional flora [9]. Among soils, Ultisols highly

weathered and poor in phosphorus are predominant. Alluvial deposits from the Quaternary

created the plains and valleys which are dominated by Inceptisols richer in phosphorus [48].

Species studied

We selected 34 tree species from 14 genera (three genera with each two endemics and two

widespread species, and 11 genera with each one endemic and one widespread species) and

Fig 1. Study area and sampling sites of endemic and widespread species in southeastern Costa Rica (Peninsula de Osa and Golfo Dulce). MAT: Mean annual

temperature, MAP: Annual precipitation sum, both according to Hijmans et al. (2005) [40].

https://doi.org/10.1371/journal.pone.0193268.g001
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grouped them into 17 pairs of congeneric species, randomly selecting the pairs in the three

genera with four species (Table 1). We note, however, that all analyses were repeated using all

possible pairs in the three genera with four species. Results were qualitatively identical. Each

congeneric pair comprises one narrowly endemic species either restricted to the central and

southern Pacific slope of Costa Rica, or, in some cases, reaching western Panama or the Carib-

bean slope in Costa Rica, and one species distributed more widely. The selection of endemic

species was limited to tree genera that include regionally sympatric species with larger range

sizes. For reasons of feasibility, our selection focused on species documented from known

localities, in particular in case of the rarer endemic species (Table 1). Among possible wide-

spread congeners, we selected those found growing in the neighbourhood of our sample of

endemics (see below).

Table 1. The species used in the analysis, their classification as either widespread or endemic, their extent of occurrence (in km) and the number of individuals sam-

pled (N).

Family Species name Range size class N Extent of Occurrence

Annonaceae Guatteria amplifolia Triana & Planch. widespread 10 1.02 • 106

Annonaceae Guatteria chiriquiensis R. E. Fr. endemics 9 8.60 • 103

Annonaceae Guatteria pudica N.Zamora & Maas endemics 16 6.87 • 102

Annonaceae Guatteria rostrata Erkens & Maas widespread 10 6.45 • 104

Annonaceae Unonopsis osaeMaas & Westra endemics 10 7.54 • 102

Annonaceae Unonopsis theobromifolia N. Zamora & Poveda widespread 10 2.81 • 104

Araliaceae Dendropanax arboreus (L.) Decne. & Planch. widespread 10 7.69 • 106

Araliaceae Dendropanax ravenii M. J. Cannon & Cannon endemics 10 1.96 • 103

Boraginaceae Cordia cymosa (Donn. Sm.) Standl. widespread 8 3.66 • 105

Boraginaceae Cordia liesneri J. S. Mill. endemics 9 4.07 • 103

Burseraceae Protium panamense (Rose) I. M. Johnst. widespread 8 1.98 • 105

Burseraceae Protium pecuniosum D. C. Daly endemics 10 1.48 • 103

Clusiaceae Chrysochlamys glauca (Oerst. ex Planch. & Triana) Hemsl. widespread 10 3.79 • 105

Clusiaceae Chrysochlamys skutchii Hammel endemics 9 2.38 • 104

Clusiaceae Garcinia aguilari Hammel endemics 10 9.43 • 101

Clusiaceae Garcinia magnifolia (Pittier) Hammel widespread 10 1.64 • 105

Euphorbiaceae Sapium allenii Huft endemics 11 8.89 • 102

Euphorbiaceae Sapium glandulosum (L.) Morong widespread 10 1.35 • 107

Fabaceae Inga skutchii Standl. endemics 10 7.79 • 103

Fabaceae Inga spectabilis (Vahl) Willd widespread 9 2.51 • 106

Lauraceae Ocotea mollifoliaMez & Pittier widespread 10 1.14 • 105

Lauraceae Ocotea rivularis Standl. & L. O. Williams endemics 9 6.68 • 102

Melastomataceae Miconia dissitinervia Kriebel, Almeda & A. Estrada endemics 11 3.75 • 103

Melastomataceae Miconia donaeana Naudin widespread 10 1.22 • 106

Melastomataceae Miconia osaensis Aguilar, Kriebel & Almeda endemics 10 9.61 • 101

Melastomataceae Miconia trinervia (Sw.) D. Don ex Loudon widespread 10 5.89 • 106

Primulaceae Ardisia compressa Kunth widespread 9 1.44 • 106

Primulaceae Ardisia dunlapiana P. H. Allen endemics 10 1.44 • 103

Rubiaceae Faramea occidentalis (L.) A. Rich. widespread 11 1.18 • 107

Rubiaceae Faramea permagnifolia Dwyer ex C. M. Taylor endemics 12 5.38 • 101

Sapotaceae Pouteria lecythidicarpa P. E. Sánchez & Poveda endemics 10 1.33 • 104

Sapotaceae Pouteria subrotata Cronquist widespread 8 1.72 • 106

Sapotaceae Pouteria torta (Mart.) Radlk. widespread 10 1.08 • 107

Sapotaceae Pouteria triplarifolia C. K. Allen ex T. D. Pennington endemics 6 2.41 • 103

https://doi.org/10.1371/journal.pone.0193268.t001
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Field work

We collected samples during the rainy season 2015 (March to October). We tried to sample at

least ten individuals per species. Some of the species were too rare, however, to accomplish a

full sample (Table 1). We collected 82 individuals previously located in permanent plots and

253 trees outside of these plots. After sampling a tree of an endemic species, we tried to locate

an individual of its widespread congener as close to it as possible, usually within a radius of

1000 m. We tried to avoid ontogenetic effects on trait variation by selecting only mature indi-

viduals (classified as such based on their diameter at breast height). A subsequent test con-

firmed that this sampling strategy had largely removed effects of tree size on trait values (S1

Fig). For each species, we sought individuals as spatially separated as possible to avoid sam-

pling siblings. All sampled trees were growing within a 35 km radius.

We collected five fully expanded, mature leaves with no signs of damage and one wood core

from each tree (S1 Text). For each leaf of each tree, we measured or calculated four functional

traits: leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), and specific leaf

area (SLA) according to standard protocols [49]. For each tree, we additionally measured

wood specific gravity (WSG) on a collected wood core. Details on measurement methods are

provided in the supplementary material (S1 Text). On a pooled leaf sample per individual, we

further measured leaf nitrogen content (N) and leaf phosphorus content (P) and calculated the

leaf N:P ratios. Leaf N was measured by dry combustion using an autoanalyzer Rapid Exceed

(Elementar, Langenselbold, Germany), and leaf P by acid digestion and inductively coupled

plasma-optical emission spectroscopy (ICP-OES) using a spectrometer Optima 8300 (Perkin

Elmer, Waltham, US) at the laboratory of the Agronomic Research Center (Centro de Investi-

gaciones Agronómicas) of the University of Costa Rica.

Environmental variation

To ease interpretation of possible differences in trait variation among congeneric species we

also sampled a number of environmental covariates. For each tree, we measured the slope of

the growing site (using a clinometer) and estimated crown exposure to light using an index

from 0 to 5 [50]. Moreover, we took geographical coordinates using a GPS device (Garmin 60

CSX, mean RSE: 6 m). Based on these coordinates, we extracted the values from six not too

closely correlated (Spearman’s correlation coefficient < 0.7) bioclimatic variables from World-

clim (resolution ~1 km) (S1 Table) [40]. These variables were: annual mean temperature,

mean diurnal temperature range, isothermality, (ratio of day-to-night temperature oscillation

to summer-to-winter oscillation), annual precipitation, precipitation seasonality and precipita-

tion of warmest quarter. We performed a PCA with those bioclimatic variables after normali-

zation by means of z-scores. The scores of the first ordination axis, which explained the 86% of

the variation was then used to characterize the mesoclimatic environment of each sampled

tree individual. To obtain positive values for all trees, we added the absolute of the overall min-

imum value to all the PCA scores. From these values, we calculated the coefficient of variation

of the climatic environment for each species. We also calculated the coefficient of variation for

the slope of growing sites and the crown exposure to light.

Functional variation and dispersion

Similar to the sampled environmental variables, we calculated the coefficient of variation (CV)

for each trait, separately for each species. Because the species differed in sample size, we cor-

rected the CV for unequal sample size assuming a normal distribution for each trait within the

species [51]. A subsequent test confirmed that this correction had successfully removed possi-

ble bias from uneven sample sizes (S2 Table). To account for the variability of species in
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multidimensional trait space, we computed the functional dispersion of each species using the

index proposed by Laliberté & Legendre [52]. This index is the average of the Euclidean dis-

tance between each individual and the centroid of all individuals per species in an ordination

space. To calculate the index, first, the traits were scaled using standard scores and then subject

to a principal component analysis to guarantee orthogonality. For the principal component

analysis, we removed the LDMC and leaf N:P because these variables were calculated from

other variables included in the PCA. We chose the first five principal components, which

accounted for the 93% of the variance (S3 Table). We selected five components because this

was the maximum the algorithm could use without a reduction of dimensionality [53]. Finally,

we calculated the functional dispersion index using the package "FD" in R [53].

Geographical range size

We defined a species’ geographical range size as the extent of occurrence (EOO) sensuGaston

& Fuller [4]. For each species, we collected geographic coordinates of occurrences from different

sources through the Global Biodiversity Information Facility (GBIF) (S4 Table) and own field

records during the collection of samples. We removed or checked the following kind of occur-

rences: a) uncertain occurrences, i.e. those separated from the nearest other record at least twice

the mean distance between all records and with locality descriptions that suggest that species

were planted in parks or gardens, b) duplicated occurrences inside of the same 1x1 km cell in a

raster map, and c) occurrences without detailed information about locality. We constructed a

polygon based on an α-hull around the occurrence localities [54] using the R package “alpha-

hull” [55]. For each species, we constructed the α-hull using 8 as α value because it was the

smallest value to obtain polygons with all internal angles greater than 0 that included all the

occurrence points of the respective species. The EOO was then calculated from the intersection

of the α-hull and the continental contour map (projected by a Lambert Equal Area Projection).

Statistical analysis

For a more detailed description of trait variability, we decomposed the variance of each func-

tional trait across three scales: genera, species, trees. We used the method described by Messier

et al. [14][14] which fits a generalised linear model to the hierarchically nested variances

(across scales). The trait values were normalized using log transformations. For the model and

variance decomposition, we used the R-packages "nlme" [56] and "ape" [57].

We used two alternative analytical approaches to compare the intraspecific variation of

traits between endemic and widespread species. First, the CV of each trait was compared

between widespread and endemic species by testing whether the differences among congeneric

species pairs significantly differ from zero, on average. We, therefore, used a linear mixed

effects model with this difference as response and the intercept as the only term on the right-

hand side of the model equation. To account for the phylogenetic structure in the data, we

additionally estimated a random intercept for each genus in the mixed model. We used the

same model structure to compare the CV of the environmental variables (crown exposure to

light, slope of the growing sites and climate) between congeneric species with contrasting

range size to consider that effect in the interpretation of the results. Moreover, we tested the

correlation between the magnitude of trait values and environmental variables by means of lin-

ear mixed effects models with a random effect for species identity. Finally, we also tested

whether similarity of trait values among individuals depends on geographical distances

between them using Mantel tests, separately for each trait and species.

In a second analysis, we tested whether the CV of individual traits could successfully

predict the species’ range size. We, therefore, used a linear mixed effects model with the log-
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transformed extent of occurrence as the response, the CV as the predictor and the genus as a

random factor. Finally, we applied both approaches to the multivariate trait space, i.e. we (1)

compared functional dispersion indices between the 17 pairs of endemic and widespread spe-

cies and tested whether the average difference among congeneric species pairs significantly dif-

fered from zero; and (2), we tested whether the functional dispersion could predict the log-

transformed range size. We used likelihood ratio tests to assess the statistical significance of

regressions terms.

To back-up our results, we additionally ran an analysis that included variation of envi-

ronmental variables at the tree level directly. We, therefore, first, regressed trait values of

individual trees against each environmental variable (climate, crown light exposure, slope

inclination), separately for each trait, species and environmental variable. Environmental vari-

ables predicting trait values in these uni-variable regression models (p-value< 0.1) were com-

bined in one linear model per species and trait (S2 Fig). We then retained those environmental

variables with a p-value < 0.05 in these (potential) multiple regression models. From these

final models, we extracted the residuals and added the original trait mean to each residual to

preserve the original measurement scale. The resulting values were used in subsequent analy-

ses. They represent the individuals’ variability in the respective trait that could not be explained

by the measured dimensions of the physical environment, and in cases where species traits

were uncorrelated to any environmental variable, the original trait values were retained. With

these new values, we estimated, again, the CV for each trait and the functional dispersion

index across all the traits and compared these metrics between widespread and endemic spe-

cies using the same procedures as described above.We ran all analyses in R 3.3.1 [58].

Results

The range size of our study species ranged from 5.37�101 to 2.38 �104 km2 for endemic species

and from 2.80�104 to 1.34�107 km2 for widespread species (Table 1, S1 File). The smallest differ-

ence between species in a congeneric pair (endemic-widespread) was 2.7�104 km2 between the

two species in the genus Unonopsis (Table 1), while the ratio between the maximum and mini-

mum range size was between 7.5, in one of the pairs in the genus Guatteria, and 2.18�105 in the

genus Faramea (Table 1, S1 File).

We sampled 335 individual trees of the selected 34 species (Table 1). Among the species

analysed, functional traits varied with respect to the magnitude of CV and in how the variance

was partitioned among levels of biological organization (Fig 2, S5 Table). For traits such as

WSG and LDMC, CVs were low (averages ± 1 standard deviation (SD): 0.09 ± 0.05 and

0.09 ± 0.04, respectively (S3 Fig) and most variance was explained by differences between gen-

era (61.8% and 57.1% respectively, Fig 2). For other traits like LA and SLA, CVs were much

higher (averages ± 1 SD: 0.28 ± 0.11 and 0.16 ± 0.07 respectively, S3 Fig) and most of the vari-

ance was explained by differences between species (49.4% and 64.4%, respectively, Fig 2). The

part of total trait variance explained by variation within trees ranged from c. 9.31% for LA to

about 45% in NP (Fig 2).

The CVs of the three environmental variables did not differ between congeneric species

with contrasting range size (S4 Fig). Concerning the magnitude of trait values, the climatic

environment had an effect on LT and WSG. LDMC and LT increased, and SLA decreased

with crown light exposure. Slope inclination was not related to the value of any trait (S6

Table). Mantel tests demonstrate that there is limited correlation between similarity of trait

values and geographical distance among species (32 significant correlations out of 272, S5 Fig).

Local (genetic) adaptation of trait values hence seems to play a relatively minor role within the

regional populations of both widespread and endemic species.
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The CV of none of the traits could significantly explain species’ range sizes (Fig 3). Simi-

larly, endemic and widespread congeners did hardly differ in trait CVs, even if variation in

WSG was marginally significantly higher, and variation in leaf N marginally significantly

lower in widespread species (Fig 4, S6 Fig). The functional dispersion index, as a multivariate

metric, could neither explain species’ range sizes (Fig 5) nor was it different between endemic

and widespread species (Fig 5, S7 Fig).

The alternative analysis using environmental variables as covariates provided qualitatively

identical results. The CV of the functional traits was not different between endemic and wide-

spread species (S8 Fig). Overall, there was no single trait for which trait variability was signifi-

cantly larger in the widespread species. The functional dispersion neither explained the EOO

(Figure A in S9 Fig) nor did it differ between the two groups (Figure B in S9 Fig).

Discussion

Trait variability among individuals of the same species makes an important contribution to

community-level trait variation in general [24]. Although our results demonstrate that for the

traits considered interspecific and intergeneric trait differences predominate, the scale of

intra-specific variability (10–45%) is similar to the global average of 25% found in the recent

meta-analysis [24]. For tree species in the tropical forest of Panama, near to our own study

area, this intra-specific trait variation has been demonstrated to compensate for species turn-

over among local plots of similar environments reducing trait differences among these plots to

a low level [14]. Taken together, these results indicate that the local environment exerts a filter

Fig 2. Partitioning of the nested variance in eight functional traits measured in 34 tropical tree species. Leaf area

(LA), leaf thickness (LT), specific leaf area (SLA) and leaf dry matter content (LDMC), wood specific gravity (WSG),

leaf nitrogen content (N) and leaf phosphorus content (P), and N:P ratio (NP).

https://doi.org/10.1371/journal.pone.0193268.g002

Is local trait variation related to total range size of tropical trees?

PLOS ONE | https://doi.org/10.1371/journal.pone.0193268 March 7, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0193268.g002
https://doi.org/10.1371/journal.pone.0193268


on the traits of individuals, at least in neotropical forests of Central America. As a corollary,

species with larger intra-specific trait variability should indeed be able to occur at more diverse

environments and thus, eventually, occupy larger ranges across the neotropical forest biome as

environmental variation tends to increase with spatial scale [26]. Nevertheless, our results did

not provide support for a relationship between the local intra-specific trait variation and range

size in the sampled tree genera. Trait variability, measured separately for individual traits or as

a combined metric across several traits, does not predict range sizes of the 34 tree species con-

sidered nor does it differ substantially among the 17 pairs of widespread and endemic conge-

ners. Several reasons may be responsible for these findings.

First, species may differ in how an individual trait responds to the same ecological gradient.

If trait-environment relationships vary among species, e.g. if the same difference in wood spe-

cific gravity results in a different decrease of drought-induced mortality [38], different levels

of trait variation are necessary for the two species to cope with the same variation in environ-

mental conditions. Vice versa, the same level of trait variability allows for coping with different

levels of environmental heterogeneity, i.e. it results in distinct niche breadth and hence, poten-

tially, also range size. Indeed, differences in the slope of trait-environment correlations among

Fig 3. Coefficients of variation (CV) in eight functional traits printed against range size of 34 tropical tree species. Functional traits: leaf area

(LA), leaf dry matter content (LDMC), leaf thickness (LT), specific leaf area (SLA), leaf nitrogen content (N), leaf phosphorus content (P), N:P ratio

(NP) and wood specific gravity (WSG). The test represents the F-value and the correspondent p-value of a generalised linear mixed effects model

testing the dependence of range size on CV and using genus as a random factor. All F-tests used 1 and 19 numerator and denominator degrees of

freedom, respectively.

https://doi.org/10.1371/journal.pone.0193268.g003
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species have repeatedly been reported [59] and may result from processes of general phenotype

integration [60]. Moreover, the effect of trait variability on niche breadth may not be indepen-

dent of the trait mean, i.e. the same amount of variability may convey higher environmental

tolerance under lower or higher average trait values. For instance, species with high xylem

hydraulic vulnerability are found in high and low rainfall regions, but species with low vulner-

ability are rare in regions with high rainfall [61]; similar patterns can be described with leaf

size, with small leaves found in high and low rainfall regions, but species with large leaves

being rare in regions with low rainfall [62]. Finally, several environmental variables often

simultaneously affect many, partly interdependent traits [59,62]. These interactions may result

in compensation effects, with species maintaining high fitness levels along an environmental

gradient despite little variation in a particular trait but variation in other traits [63].

Fig 4. Coefficients of variation (CV) in eight functional traits of 17 congeneric pairs of endemic neotropical tree species and their widespread congeners.

Functional traits: leaf area (LA), leaf dry matter content (LDMC), leaf thickness (LT), specific leaf area (SLA), leaf nitrogen content (N),leaf phosphorus content

(P), N:P ratio (NP), and wood specific gravity (WSG). Each point represents one pair (endemic, widespread). The continuous diagonal represents the null model,

i.e. positioning of points along the line indicates equal trait variability of both species in a pair. Points above the line represent pairs with CV higher in widespread

species, and points below the line pairs with CV higher in endemic species. The dotted diagonal represents the mean difference between pairs in case this

difference was statistically significant.

https://doi.org/10.1371/journal.pone.0193268.g004
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Second, maximum or average trait values of species may be more important for geographi-

cal success than trait variability, as has been shown for some groups of trees with respect to e.g.

maximum height, WSG and N [64,65]. The importance of absolute trait values may result, for

example, from the competitive superiority they provide [37]. From the traits analyzed here,

leaf nitrogen content is, for example, linked directly to photosynthetic rate [66], which in turn

is related to growth and demographic processes of survival and recruitment [67], and hence

also to competitive ability [37,68]. If the competitive ability is more important in determining

species’ rate of geographical expansion and eventual range size [69,70] than environmental tol-

erance, then absolute values of these traits may be more closely linked to range sizes than trait

variation, and selection may generally disfavour variability of these traits in successful species.

More generally, the idea of a causal link between biogeographical success and intra-specific

trait variation may overlook the possible negative effects of inherently high trait variability

[63,71]. Indeed, too large variation can be maladaptive, especially on a local scale where corre-

lated environmental conditions exert selective pressures on populations towards phenotypic

stability [63]. The balance between negative and positive effects of trait variability may depend

on the harshness of environmental conditions, i.e. the strength of environmental filtering in a

species preferred habitat [72,73]. In line with this idea, our data actually indicate that species

with higher WSG, i.e. those likely adapted to drought [38], had proportionally lower variation

in this trait than species with low WSG (S10 Fig). We moreover emphasize that further evalua-

tions of the correlation between trait variability and range size should include aspects of evolu-

tionary history and clade age [74], and account for differential evolutionary constraints on the

variability of individual traits. Here, we tried to minimize confounding effects of evolutionary

history by focusing on congeneric species pairs. However, even the individual species in these

Fig 5. Functional dispersion, calculated from six functional traits of the studied 34 tropical tree species. A) Functional dispersion in relation to the range

size. B) Functional dispersion (FD) of 17 congeneric pairs of endemic species and their widespread congeners. In Fig 5B each point represents one pair

(endemic, widespread). The diagonal represents the null model, i.e. positioning of points along the line indicates equal functional dispersion of both species in

a pair. Points above the line represent pairs with FD higher in widespread species, and points below the line pairs with FD higher in endemic species.

https://doi.org/10.1371/journal.pone.0193268.g005
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pairs may substantially differ in evolutionary age and these differences may have had an

important impact on current range sizes. Unfortunately, detailed phylogenies are currently

available for only three of the studied genera (Dendropanax, Guatteria and Protium) [75–77].

From the coarse information deducible from these phylogenies, effects of evolutionary age on

range size differences are not apparent (S7 Table), but additional data for other genera, and

with a higher temporal resolution, may change these conclusions.

Third, documented intra-specific trait variation across the entire geographical distribution

of a species, including that of traits analyzed here [23,78,79] may actually be a result of range

expansion rather than a prerequisite. Indeed, our data do not provide any support for the idea

that inherent trait variability begets large range sizes [6]. However, they do not, exclude that

large range sizes beget high trait variability at the whole-range scale.

Fourth, range size is of course not exclusively controlled by the traits studied here. For

example, traits related to the reproduction, dispersal and migration of species, such as pre-

ferred dispersal vector, seed size, or mating system, are likely important for range expansion

[74,80,81]. The information available for the species studied here is not sufficient for a quanti-

tative analysis of these effects. However, the available literature data do not suggest that seed

traits or predominant dispersers differ saliently between congeneric widespread and endemic

species pairs, nor did we find any evidence for their impact on range sizes in our data (S8

Table). In fact, within-genus variation is often low for these two traits [82,83]. As a corollary,

while these traits certainly affect biogeography [80,81], they are unlikely to have a major effect

on range differences among closely related species

Finally, we emphasize that our results do not strictly falsify intra-specific variability as a

driver of range size [84]. In particular, our regional-scale study may not have captured the full

extent of inherent heritable trait variability, particularly in widespread species. However, as the

sampling sites did vary in environmental conditions at least to a certain extent, our data sug-

gest that the observed level of environmental variation did not trigger the display of larger trait

variability in species with larger ranges. This finding suggests that these species are not per se

more flexible when confronted with varying environments.
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