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Abstract
Large-scale identification of land use and land cover change in a tropical forest is a challenge to landscape designers and 
forest ecologists. Here, Landsat images acquired during the years 2000, 2009, and 2018 were used to assess the spatial-
dynamics of land use and land cover (LULC) during the last two decades (2000–2018). A classification system composed 
of six classes—dense forest with (high tree density and low tree density), swampy Raphia forest, swampy flooded forest and 
savanna were designed as LULC for this study. A maximum likelihood classification was used to classify Landsat images 
into thematic areas. Elsewhere, Landsat-based LULC mapping, post classification at the per-pixel scales and self-knowledge 
on the land cover change processes were combined to analyze LULC change, forest loss and change trajectories in Doume 
Communal Forest in eastern Cameroon. The results show that half of the study area changed in 2000–2009 and that the dif-
ferent types of LULC changes increased and involved more diverse and characteristic trajectories in 2009–2018 compared 
to 2000–2009. Degradation to a dense forest with low tree density and swampy Raphia forest was dominant, and the forest 
was mostly lost due to trajectories that involved conversion to agroforestry systems (10%), and a lesser extent due to trajec-
tories that involved deforestation to grasslands (7%). The trajectory analyses did thus contribute to a more comprehensive 
analysis of LULC change and the drivers of forest loss and, therefore, is essential to improve the sustainable management 
and support spatial planning of the forest.

Keywords Geographic information systems · Land use/land cover changes · Land management · Multi-temporal Landsat 
imagery · Remote sensing · Tropical rainforest · Cameroon

Introduction

Land use and land cover (LULC) comprises two separate ter-
minologies which are often used interchangeably (Dimyati 
et al. 1996). Land cover refers to the physical characteris-
tics of the earth’s surface, captured because the distribution 
of vegetation, water, soil and other physical features of the 
land, including those created by anthropogenic activities. 
Land use, however, refers to the way land is used by humans 
including all infrastructure, usually highlighting the func-
tional role of land for their economic activities (Rawat and 
Kumar 2015). The LULC pattern of ecosystems is an out-
come of natural and socio-economic factors and their spa-
tial–temporal utilization. Information on LULC and pros-
pects for his or her optimum use is crucial for the choice, 
planning, and implementation of land use schemes to satisfy 
the increasing demands for basic human needs and welfare. 
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This information also assists in monitoring the dynamics of 
land use resulting from the changing demands of the increas-
ing populations.

Studies on LULC (e.g. Lambin et al. 2001; Geist and 
Lambin 2002; Kibret et al. 2016; Gidey et al. 2017; Kindu 
et al. 2018; Momo Solefack et al. 2018) show that socio-
economic and biophysical variables act as the driving forces 
of land use changes. Miheretu and Yimer (2017) subdivided 
these drivers into two groups: proximate causes and underly-
ing causes. Proximate causes are the activities and actions 
that have an affect on land use, e.g. wood extraction or road 
construction. Underlying causes are the elemental forces that 
underpin the proximate causes, together with demographic, 
economic, technological, institutional and cultural factors 
(Geist and Lambin 2002), that represent the biggest driver 
of biodiversity loss and climate change (Bellard et al. 2012; 
Zari 2014; Wu et al. 2017). Due to these global drivers, 
LULC change is present in all environments across the globe 
(Lambin et al. 2001; Geist and Lambin 2002).

Each year large surfaces of tropical forests are pro-
foundly transformed by anthropogenic activities (Le Toan 
et al. 2011; Harris et al. 2012; Le Quéré et al. 2013; Malhi 
et al. 2014; Le Quéré et al. 2016). Due to the huge negative 
impact of forest loss on global climate change and ecosys-
tem services, tropical deforestation is considered as the most 
paradigmatic example of LULC change (Foley et al. 2005). 
During the last two decades, 80% of new agricultural land 
across the world came from the conversion of tropical for-
est (Gibbs et al. 2010; Pendrill and Persson 2017) meaning 
that about one-third of the global land surface is classified 
under this land use (Ellis et al. 2010; Sebastian et al. 2015).

The forests of Cameroon, with around 22.5 million ha of 
forest cover, or 48% of the national territory, represents the 
second largest tropical forest area in Congo Basin after those 
of the Democratic Republic of Congo (De Wasseige et al. 
2009). According to the FAO, the annual average deforesta-
tion rate in Cameroon for the 1980–1995 period was 0.6% 
or a loss of close to 2 million ha (WRI, UNEP, UNDP and 
World Bank 1998). During 1999–2000, however, the defor-
estation rate was close to 0.9%, and reached 1% between 
2000 and 2005 (FAO 2006). Between 1990 and 2010, it is 
estimated that Cameroon lost 4400 ha (18.1%) (FAO 2011). 
This fast deforestation rate of destructing ecosystems is a 
major threat to global biodiversity (Myers 1988; Sanger-
mano et al. 2012; Marchese 2015). It also compromises the 
future of many indigenous people as well as the future of 
local populations (Lewis et al. 2009; Smail and Lewis 2009). 
Understanding LULC change and its underlying factors is 
important for biodiversity conservation and climate change 
mitigation policies.

LULC change can contribute to climate change through 
changes in the global carbon cycle (Davies-Barnard et al. 
2015). Such impacts underpin several global initiatives 

that Cameroon has subscribed to, such as REDD+ and the 
Nagoya protocol of the Biological Diversity agreement, 
which seeks to reduce LULC change patterns and their 
impacts on biodiversity (CBD 2005). However, the success 
of such initiatives relies in part on sound scientific informa-
tion on LULC change levels in tropical regions and their 
evolution over time, but quantitative data on LULC change 
are generally incomplete and unreliable (Ramankutty et al. 
2007; Grainger 2008; Grainger 2010). Even though LULC 
change has attracted much attention over the last three dec-
ades, for lower-income countries, understanding their pro-
cess and structure over the space and time remains one of the 
major challenging activities (Ghilardi et al. 2016).

Several studies used remote sensing and geographic infor-
mation system (GIS) tools to obtain accurate and timely spa-
tial data of land use and land cover, as well as information 
on the changes in a study area (e.g. Gidey et al. 2017; Momo 
Solefack et al. 2018). Remote sensing images can effectively 
record the current status of land use and provide an excel-
lent source of data, from which updated LULC information 
and changes can be extracted, efficiently analyzed through 
certain means (Pradhan et al. 2008; Singh et al. 2017). 
Therefore, remote sensing is widely used in the detection 
and monitoring of land use at different intervals and scales 
(Lu et al. 2012a; Basnet and Vodacek 2015; Momo Sole-
fack et al. 2018) while GIS provides a flexible environment 
for collecting, storing, displaying and analyzing digital data 
necessary for change detection.

While these tools are of unparalleled importance for forest 
sustainable management and monitoring, it is also true that 
they are not frequently used by forest managers both at the 
national and local level. This study focuses on the Doume 
Communal Forest (DCF) situated in eastern Cameroon and 
belonging to the guineo-Congolese domain (Letouzey 1985). 
The forest is crucial for both national development and the 
livelihoods of about 22,763 local inhabitants (Anonymous 
2015). This forest is subject to intense pressure due to rapid 
population growth, logging and hunting activities that exert 
a diverse ecological impact on the forest ecosystems. There-
fore, to address the challenges of global change, vulnerabil-
ity, resilience and adaptive capacity of the forest ecosystem 
and improve the management and monitoring of natural 
resources, timely, accurate and up to date information of 
LULC change and trajectories are required.

This study aims to analyze the land cover changes and 
trajectories that have occurred in Doume Communal Forest 
over the past two decades (2000–2018) using the integra-
tion of remote sensing and GIS applications. We address 
the question: what are the dynamics and the trajectories 
of LULC in the DCF for the three periods of 2000–2009, 
2009–2018, and 2000–2018? Considering the process of 
Doume Communal Forest classification started in 2008 
and assuming that its management follows the principles 
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of sustainable management, it is expected that the dynam-
ics and change trajectories of LULC for the second dec-
ade 2009–2018 would be lower than for the first decade 
2000–2009.

Materials and methods

Study area

The study was conducted within the semi-deciduous for-
est, Doume Communal Forest (DCF) in eastern Cameroon 
(4°31′0″S and 13°47′5″W). The forest is managed by the 
Doume municipality and cover an area of 45,359 ha divided 
into two blocks (25,810 ha for block 1 and 19,549 ha for 
block 2). The first block is located between 4°16′N, 4°32′N, 
13°16′E, and 13°32′E and shares boundaries with the Dou-
maintang Communal and Bayong community forests. The 
second block is located between 4°8′N, 4°16′N, 13°12′E and 
13°32′E and shares boundaries with the Angossas Commu-
nal forest (Fig. 1 ). The vegetation belong to the guineo-Con-
golese domain and classified as Sterculiaceae and Ulmaceae 
forest (Letouzey 1985).

The DCF lies within the geological bedrock. Some areas 
characterized by the presence of migmatic gneisses and ana-
texis granites belonging to the Precambrian base complex 
dated between 2.5 and 1.8 billion years (Nougier 1979 cit. 

Anonymous 2015). The soils are derived from the alteration 
of metamorphic source rocks widely dominate. The DCF 
is covered mostly by ferralitic red soils, loose and perme-
able, with little humus which can be several meters thick and 
the minerals are completely hydrolyzed with the removal 
of bases and silica. These soils are poor in nutrients, acids 
and fragile. In the shallows, the soils are hydromorphic to 
gley (Anonymous 2015). Relatively uniform, the relief of the 
forest can be described as slightly uneven. It presents a suc-
cession of low hills with generally gentle slopes interspersed 
with small well-marked streams, or swampy depressions 
(several hundred meters) without a distinct watercourse. 
Steep slopes can be observed but they remain much local-
ized on the edge of lowlands or rivers, and their difference 
in level seldom exceeds 20–30 m. The altitude varies from 
605 to 760 m, with some particularly marked summits, cul-
minating at less than 700 m of altitude (Anonymous 2015).

The DCF is localized in locality with an Equatorial 
Guinean climate type characterized by (1) an annual 
rainfall included between 1300 and 1800 mm with 02 
rainy seasons interspersed by two dry seasons and dis-
tributed; (2) the annual average temperature is 25 °C with 
an amplitude of 2.4 °C. It varies between 25 and 30 °C 
from March to November. Whereas, from December to 
February, the hottest months, the temperature can rich at 
35 °C; (3) the seasonal cycle is mainly governed by the 
annual movements of the intertropical front, between the 

Fig. 1  Map and localization of the Doume Communal Forest, showing the two blocks (FC DOUME block 1 and 2) of Doume Communal Forest
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convergence zones of the southern trade winds and the 
northern trade winds. On the Nyong Basin these displace-
ments result in dry winds from December to February, 
relatively wet winds from March to July, wet from August 
to October and relatively dry in November.

Data collection and research methods

This study used remote sensing, GIS techniques and field 
data to classify and map the current and historic LULC. 
The overview of the research design, including all remote 
sensing and GIS techniques used, is summarized by the 
flow chart (Fig. 2).

Satellite images

We obtained free cloud cover Landsat 7 Enhance The-
matic Mapper Plus (ETM+) images for the years 2000 
and 2009, and Landsat 8 Operational Land Imager and 
Thermal Infrared Sensor (OLI/TIRS) 8 images for the 
year 2018. The images scenes were designated by path 
184/row 057 and acquired from https ://earth explo rer.
usgs.gov, the United State Geological Survey (USGS) 
Landsat archive. Furthermore, we obtained “Satellite 
Pour l’Observation de la Terre” (SPOT) 7 images for 
the study area from Airbus Defence and Space, which 
were available through the project “Observation Spatiale 
des Forêts d’Afrique Centrale et de l’Ouest” (OSFACO, 
http://www.osfac o.org). However, these SPOT images did 
not cover the entire study area and were, therefore, only 
used to obtain additional reference data to validate further 
classification.

Field data collection and land use/land cover classification

To classify the landscape into different LULC classes, we 
used the classification scheme developed by the Doume 
Forest Council, derived from earlier field observations in 
the landscape. These included the following LULC classes: 
swampy Raphia forest (RphSF), swampy flooded forest 
(SwFF), grasslands (GrlD), dense forest with low tree den-
sity (DFTLD), dense forest with high tree density (DFHTD), 
agroforestry systems land (AgrL).

We performed field surveys to categorize the landscape 
into the abovementioned LULC classes, for two applications: 
as training samples for landscape classification (see “Super-
vised classification”), and as reference data for accuracy 
assessment (see “Post classification”). Field surveys were 
conducted from June–August 2018 and four hundred ground 
truthing data were collected using a Garmin 62S GPS for 
all LULC type. The great challenge in tropical dense for-
ests is the accessibility of remote areas of the forest interior. 
Therefore, the obtained SPOT 7 images over the study area 
were used to collect fifty sampling points in the remote areas 
where the field team could not access. To collect the refer-
ence data for 2000–2009 period, Google Earth Pro was used. 
We additionally described the area using the management 
plan of the Doume Communal Forest where extensive field 
inventory was done to describe the LULC classes.

Image pre‑processing

We took three steps for the pre-processing of the Landsat 
images. First, we had to make sure that information from 
all bands to be used (seven first bands; Table S1) had the 
same spatial resolution, so that their information could be 
combined. Furthermore, as all the images had previously 
been related to the Universal Transverse Mercator (UTM) 

Fig. 2  Flow chart of the 
research methodology

Post-processing 
images classification
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coordinate system 33 N, and that their geometric accuracy 
met our research requirement, there was, therefore, no need 
for any further geometric correction. Second, as the Landsat 
7 ETM+ and Landsat 8 OLI/TIRS, did not have the same 
spatial resolution, there was a need to improve the Landsat 
7 ETM+ with 30 m × 30 m so that it had the same spatial 
resolution of Landsat 8 OLI/TIRS. For that, we used the 
image enhancement Ehlers fusion resolution merge technic 
(Ehlers 2004), which has the aptitude for creating multispec-
tral images of higher spatial resolution while preserving the 
spectral characteristics of the lower resolution multispectral 
images (Lu et al. 2011; Chitade and Katiyar 2012). To avoid 
the change of digital numbers and keep the images at the 
same pixel size of 30 m by 30 m, during image-to-image 
registration, the nearest neighbour resampling algorithm 
was used to resample (Li et al. 2011) the TM+ and OLI 
images. Therefore, the spatial resolution of all products was 
improved from 30 m × 30 m into 15 m × 15 m. Third, for 
each year’s images, we combined the first seven bands into 
a composite image using the layer-staking function of the 
remote sensing software ERDAS v.14. The raster images 
obtained were sub-set to the study area using a boundary 
vector file.

Landscape classification

Supervised classification To classify Landsat pixels into 
different LULC classes, we used the often-used maximum 
likelihood supervised classification (MLC) (Lu et al. 2004; 
Zhang et al. 2016). The MLC is the most common paramet-
ric classifier that assumes a normal or near normal spectral 
distribution for each feature of interest and equal prior prob-
ability among the classes. The MLC is based on the prob-
ability that a pixel belongs to a particular class. It assumes 
that these probabilities are the same for all classes, and that 
the input bands have normal distributions (Li et al. 2011; Lu 
et al. 2012b).

To specify the various pixel values or spectral signatures 
that should be associated with each LULC, one hundred and 
seventy GPS data were randomly selected and used as train-
ing samples, and hence the MLC used the spectral signatures 
from these training areas to classify the whole image (Lu 
et al. 2005, 2012b; Zhang et al. 2016). Depending on the 
homogeneity of the LULC type, a polygon of 8–40 pixels 
for each GPS was selected. Selection of training samples 
was followed by an evaluation of the spectral separability of 
the training samples to obtain more accurate values of the 
training samples where necessary. According to literature, 
the classification could be reasonably made only if the sepa-
rability of two training samples is sufficient (≥ 10) (Zhang 
et al. 2016). Finally, the MLC and his function parallelepi-
ped decision rules were applied to the training samples to 
analyze each pixel and aggregate the pixels into different 

LULC types of training samples, and the landscapes were 
preliminarily classified into different LULC types on a map.

Post classification To assess the accuracy of the LULC clas-
sifications from Landsat images, the level of error contrib-
uted by the LULC image, we used the producer’s accuracy, 
user’s accuracy, overall accuracy and kappa coefficient sta-
tistics based on a pixel to pixel comparison for the years 
2000, 2009 and 2018. The producer’s accuracy explains 
how well a certain LULC type was classified, i.e. how often 
real features on the ground were correctly shown on the 
classified map, or the probability that a certain land cover 
type on the ground was classified as such. The producer’s 
accuracy was computed as the number of reference sites 
classified accurately divided by the total number of refer-
ence sites for that class (Congalton 1991). In contrast, the 
user’s accuracy essentially tells the user how often the class 
on the map will be present on the ground, which refers to 
the reliability. This was computed as the fraction of the total 
number of pixels classified on the total number of correct 
classifications for a particular LULC for a particular class, 
and was used to examine the reliability of classified LULC. 
The overall accuracy often used to assess the performance 
of each LULC was computed as the fraction of the total 
number of correctly identified pixels on the total number 
of pixels (Congalton 1991). The kappa statistics is another 
accuracy indicator, which measures how the classification 
results compare to values assigned by chance.

Analysis to quantify land use and land cover change and tra‑
jectories To quantify the LULC change processes and 
trajectories in DCF during the two periods, we proceeded 
with analyses consisting of two stages. First, we conducted 
a quantification of the area per land cover type for 2000, 
2009 and 2018 based on the attribute tables of the land cover 
maps in ArcGIS 10.5.1. In this way, we could quantify what 
LULC types increased and what LULC types decreased in 
land area between 2000–2009 and 2009–2018 and during 
the whole period 2000–2018. The following parameters 
were computed for each LULC between 2000–2009, 2009–
2018, and the whole period (2000–2018): the absolute 
change in total area (Ci), the proportional change in area, 
relative to the initial area (C%), and the annual rate of rela-
tive area change (Ar).

This analysis provided the gain or loss for specific LULC 
types, but did not allow us to quantify the LULC change 
processes and trajectories or to identify what LULC types 
had replaced the previous LULC. Therefore, in the second 
stage, we conducted a change detection at per-pixel using 
cross-tabulations of the LULC maps, to characterize and 
analyze the LULC change processes and trajectories, which 
we call the trajectory analyses. Furthermore, we used the 
post classification approach to examine the detailed LULC 
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change trajectories at the per-pixel scale for the three periods 
following Lu et al. (2013). More specifically, these trajectory 
analyses consisted of identifying the changes of one Land 
cover into another land cover and the process implying it 
(see Appendix S2 for more explanation on land cover change 
processes and trajectories).

Results

Land use/land cover classification and accuracies 
results

The main aim of this study was to determine the accuracy 
with which Landsat ETM+ and Landsat OLI can be used to 
classify the LULC for the three periods. The classification 
accuracy assessment results for the three periods indicated 
that the MLC method applied on Landsat images effectively 
classified the study area into six classes (Fig. 3), providing 
the fundamental data sources for examining LULC change 
trajectories.

The computed error matrices for the classified images 
revealed an overall accuracy of over 80% for the three 

classification dates and an overall kappa statistics of over 
74% in the classification of the three periods (Table 1). The 
Classification of LULC using the Landsat 8 OLI for the year 
2018 gave the highest classification accuracy (89.45%) and 
kappa statistics (0.87) compared to the Landsat 7 ETM+ 
images used for the years 2000 and 2009.

Status and dynamic of land use and land cover 
in Doume Communal Forest

The land cover map comparisons showed that in 2000, most 
of the areas in the DCF were covered with forest (39,520 ha; 
98%) and that about 256.94 ha representing 0.65% of this 
forest area was lost between 2000 and 2009. This percent-
age represented deforestation of all LULC. Therefore, we 
observed that during the two decades the forest land cover 
was facing deforestation and degradation. Hence, dense for-
est with high tree density (~ 22,943 ha representing 59% 
of the total forest) lost about 5% of its area between 2000 
and 2009 (Fig. 3, Table 2). This loss continued to increase 
between 2000 and 2009 (~ 1099 ha; ~ 5%) and 2009–2018 
(~ 3864 ha; ~ 17%). This increased loss corresponded to an 
annual loss of 0.51 and 1.69, respectively, for 2000–2009 

Fig. 3  Spatio-temporal land use and land cover type of 2000 (a), 
2009 (b), and 2018 (c) in the study area (LULC types—AgrL, 
DFHTD, DFLTD, RphSF, SwFF and GrlD represent agroforestry sys-

tems Land, dense forest with high tree density, dense forest with low 
tree density, swampy Raphia forest, swampy flooded forest and grass-
lands, respectively)
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and 2009–2018 (Tables 2, 3). Not only the dense forest with 
high trees density surfaces decreased, but also the swampy 
Raphia and swampy flooded forests in terms of canopy 
cover. Swampy Raphia forest declined from 2000–2009 by 
~ 4% to ~ 11% in 2009–2018 while Swampy flooded forests 

declined from 2000–2009 by 270 ha (~ 23%) to 295 (~ 25%) 
(Fig. 3, Tables 2, 3). In contrast, at the same time, signifi-
cant improvements in other LULC (e.g. agricultural areas, 
grassland areas and dense forest with low trees density 
areas) were observed. Dense forest with low tree density 

Table 1  Accuracy assessment 
results for the three periods in 
the study area

LULC types—AgrL, DFHTD, DFLTD, RphSF, SwFF and GrlD represent agroforestry systems land, dense 
forest with high tree density, dense forest with low tree density, swampy Raphia forest, swampy flooded 
forest and grassland, respectively. RT and CT represent row total and column total, respectively

LULC types AgrL DFHTD DFLTD RphSF SwFF GrlD RT CT Producers 
accuracy 
(%)

Users 
accuracy 
(%)

Accuracy assessment for the 2000 classified image
 AgrL 24 0 0 4 0 0 28 26 92.31 85.71
 DFHTD 0 15 3 0 2 0 20 17 88.24 75.00
 DFLTD 0 1 70 10 7 0 88 90 77.78 79.55
 RphSF 2 0 12 48 1 0 63 65 73.85 76.19
 SwFF 0 1 4 3 45 0 53 55 81.82 84.91
 GrlD 0 0 1 0 0 3 4 3 100.00 75.00
 Overall classification accuracy = 80.08%; kappa statistics: 0.74

Accuracy assessment for the 2009 classified image
 AgrL 9 7 0 0 0 2 18 86 95.35 50.00
 DFHTD 1 46 3 1 2 2 55 22 77.27 83.64
 DFLTD 1 3 17 0 0 0 21 62 88.71 80.95
 RphSF 1 1 1 5 0 0 8 61 75.41 62.50
 SwFF 4 3 0 2 82 3 94 9 55.56 87.23
 GrlD 0 1 1 1 2 55 60 16 56.25 91.67
 Overall classification accuracy = 83.59%; kappa = 0.78

Accuracy assessment for the 2018 classified image
 AgrL 3 0 0 0 0 0 3 6 50.00 100.00
 DFHTD 0 41 1 0 1 0 43 51 98.15 94.64
 DFLTD 1 2 53 0 2 1 59 54 80.39 89.13
 RphSF 2 1 0 51 1 0 55 54 94.44 92.73
 SwFF 0 5 0 3 61 4 73 66 92.42 83.56
 GrlD 0 2 0 0 1 20 23 25 80.00 86.96

Overall classification accuracy = 89.45%; kappa statistics = 0.87

Table 2  Change in land use and 
land cover from 2000 to 2009 
in Doume Communal Forest in 
eastern Cameroon

LULC types—AgrL, DFHTD, DFLTD, RphSF, SwFF and GrlD represent agroforestry systems Land, 
dense forest with high tree density, dense forest with low tree density, swampy Raphia forest, swampy 
flooded forest and grassland, respectively

LULC type 2000 2009 LULC change between 2000 and 2009

Area (ha) % Area (ha) % Area (ha) % Annual 
change rate 
(ha)

%

AgrL 882.54 2.18 1139.48 2.82 256.94 29.11 28.55 3.23
DFHTD 23,943.03 59.26 22,843.50 56.54 − 1099.54 − 4.59 − 122.17 − 0.51
DFLTD 12,239.92 30.30 13,308.69 32.94 1068.76 8.73 118.75 0.97
RphSF 2010.26 4.98 1934.33 4.79 − 75.93 − 3.78 − 8.44 − 0.42
SwFF 1170.93 2.90 900.95 2.23 − 269.98 − 23.06 − 30.00 − 2.56
GrlD 155.37 0.38 275.55 0.68 120.18 77.35 13.35 8.59
Total 40,402.50 100 40,402.50 100 – – – –
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increased between 2000–2009 and 2009–2018 in terms of 
land area from 1069 ha (9%) to 2490 ha (19%), respectively 
(Fig. 3, Tables 2, 3). It was observed that the area of agro-
forestry systems had almost tripled from 882 ha in 2000 to 
almost 2561 ha in 2018 (Table 4). This expansion of agro-
forestry systems was observed to be at an annual rate of 
10% during the two decades. Grassland also increased from 
120 ha (78%) up to 180 ha (65%) between 2000–2009 and 
2009–2018. The changes occurred in the dense forest with 
high tree density areas over time are a direct effect of the 
changes in agroforestry systems land, dense forest with low 
density and grassland in 19 years (Table 4).  

Change trajectories of land use and land cover 
in Doume Communal Forest

The main LULC change processes and trajectories in the 
period 2000–2018, as identified after post-classification 
(thick arrows in Fig. S1 show the dominant processes) 
were large-scale degradation, deforestation and subse-
quently conversions of forest land. On a less common 

basis, restoration occurred from dense vegetation with 
low tree density to dense vegetation with high tree den-
sity. Furthermore, the abandonment and regeneration of 
forest from agroforestry systems to the dense forest were 
recorded.

In this study, the same trajectories were identified 
during the first, the second and the entire period of the 
study. The following trajectories were identified in order 
of complexity:

• multiple-step trajectories of (1) forest degradation, (2) 
deforestation and (3) conversion of dense forest to agro-
forestry systems land; (4) the passage of dense forest with 
high tree density into swampy flooded forest under spe-
cific climatic conditions;

• multiple-step trajectories of (1) degradation, (2) restora-
tion of dense forest with low tree density to high tree 
density, (3) conversion of dense forest to agroforestry 
systems, and (4) abandonment and regeneration; (5) 
the passage of dense forest with low tree density into 
swampy flooded forest under specific climatic conditions;

Table 3  Change in land use and 
land cover from 2009 to 2018 
in Doume Communal Forest in 
eastern Cameroon

LULC types—AgrL, DFHTD, DFLTD, RphSF, SwFF and GrlD represent agroforestry systems land, dense 
forest with high tree density, dense forest with low tree density, swampy Raphia forest, swampy flooded 
forest and grassland, respectively

LULC type 2009 2018 LULC change between 2009 and 2018

Area (ha) % Area (ha) % Area (ha) % Annual 
change rate 
(ha)

%

AgrL 1139.48 2.82 2561.10 6.34 1421.62 124.76 142.16 12.48
DFHTD 22,843.50 56.54 18,979.44 46.98 − 3864.06 − 16.92 − 386.41 − 1.69
DFLTD 13,308.69 32.94 15,799.00 39.10 2490.31 18.71 249.03 1.87
RphSF 1934.33 4.79 1731.31 4.29 − 203.02 − 10.50 − 20.30 − 1.05
SwFF 900.95 2.23 875.88 2.17 − 25.07 − 2.78 − 2.51 − 0.28
GrlD 275.55 0.68 455.77 1.13 180.22 65.40 18.02 6.54
Total 40,402.50 100.00 40,402.50 100.00 – – – –

Table 4  Change in land use 
and land cover in the last two 
decades in Doume Communal 
Forest in eastern Cameroon

LULC types—AgrL, DFHTD, DFLTD, RphSF, SwFF and GrlD represent agroforestry systems land, dense 
forest with high trees density, dense forest with low tree density, swampy Raphia forest, swampy flooded 
forest and grassland, respectively

LULC type 2000 2018 LULC Change between 2000 and 2018

Area (ha) % Area (ha) % Area (ha) % Annual 
change rate 
(ha)

%

AgrL 882.54 2.18 2561.10 6.34 1678.56 190.20 88.35 10.01
DFHTD 23,943.03 59.26 18,979.44 46.98 − 4963.59 − 20.73 − 275.76 − 1.09
DFLTD 12,239.92 30.30 15,799.00 39.10 3559.08 29.08 187..32 1.53
RphSF 2010.26 4.98 1731.31 4.29 − 278.94 − 13.88 − 14.68 − 0.73
SwFF 1170.93 2.90 875.88 2.17 − 295.05 − 25.20 − 15.53 − 1.33
GrlD 155.37 0.38 455.77 1.13 300.40 193.35 15.81 10.18
Total 40,402.50 100 40,402.50 100 – – – –
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• multiple-step trajectories of (1) conversion of forest to 
agroforestry systems land and (2) abandonment and 
regeneration;

• multiple-step trajectories of (1) degradation, and (2) 
abandonment and regeneration;

• two-step trajectories of (1) conversion of grassland to 
agroforestry systems land, and (2) abandonment and 
regeneration.

Quantification and schematic presentation 
of land use and land cover change processes 
and trajectories

F ro m  t h e  p i xe l - t o - p i xe l  c ro s s  t a b u l a t i o n s 
(Table S4–Table S9), we were able to quantify and charac-
terize the specific land cover change processes and trajecto-
ries that had occurred in the DCF and which resulted in for-
est change (see Fig. 4a, b, Table 5). Between 2000 and 2018, 
about 53.45% (~ 21,583 ha) of the LULC in the study area 
had changed (Table 5). Figure 4a, b and Table 5 show that in 
the periods 2000–2009 and 2009–2018, most of the loss of 
dense forest with high tree density to a dense forest with low 
tree density and swampy Raphia was caused by degradation, 

Fig. 4  Quantification and schematic presentation of the LULC change 
processes and trajectories in the Doume communal Forest based on 
the pixel-to-pixel cross-tabulations of the land cover maps. Each 
arrow shows the change from one land use and land cover type to 
another that occurred from 2000–2009 (a), from 2009–2018 (b) and 
2000–2018 (c). The thickness and the color of each arrow indicate the 
area of change for each of the trajectories and the processes within 
the given period, respectively. The trajectories are either dominant 

(thick of arrows) or less dominant (thin arrows): (A: green) degrada-
tion to dense forest with low tree density or swampy Raphia forest; 
(B: pink) restoration of degraded dense forest with low tree density 
into dense forest with high tree density; (C: orange) abandonment and 
regeneration; (D: red) conversion of forest and grassland into agro-
forestry systems; (E: yellow) deforestation to grassland; (F: blue) the 
passage of dense forests into swampy flooded forest which occurred 
under specific climatic conditions
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direct conversions to agroforestry systems and the dense for-
est by deforestation to grassland. In more details, over the 
19 years analyzed, degradation entailed 9240 ha or 43% of 
the total land cover change, conversions from forest to agro-
forestry systems entailed 2164 ha or 10%, and deforestation 
of dense forest to grassland entailed 1481 ha or 7% of the 
total land cover change (Table 5). Table S4–Table S9, show 
the hectares and percentage of the area. For example, from 
2000 to 2009, almost 8601 ha of dense forest with high tree 
density was degraded to a dense forest with low tree density, 
while about 1128 ha was converted into agroforestry systems 
and 153 ha was deforested to grassland. Furthermore, in 
the period 2009–2018, an additional 7646 ha of dense for-
est with high tree density was degraded to low tree density 
and swampy Raphia forest, and 1191 ha were deforested 
to grassland. In contrast, in that same period (2009–2018), 
2164 ha of forest and grassland was converted and afforested 
respectively into agroforestry systems. 

Between 2000 and 2018, about 99% of the total area of 
land cover change had changed through multiple-step trajec-
tories (see the arrows in Fig. 4c), meaning that land cover 
had changed from one type to several other land cover types 
within the total study period. Only ~ 1% of the total area of 
land cover change had changed through two-step trajecto-
ries between 2000 and 2018, indicating that land cover had 
changed from one type to a second type and further to a 
third type. The first type of multiple-step trajectories that 
had occurred in the landscape (in terms of land area, namely 
~ 11,743 ha in total) involved forest degradation (from more 
dense forest with high tree density to more dense forest with 
low tree density types and swampy Raphia forest), deforesta-
tion (from dense forest with high tree density to grassland) 
and conversion (from dense forest with high tree density 
to agroforestry systems). The second type of multiple-step 
trajectories involved changes from the dense forest with low 
tree density (6983 ha in total) to a dense forest with high 

tree density (i.e., restoration), to swampy Raphia forest (i.e. 
degradation) or grassland (i.e., deforestation), and further 
to agroforestry systems (i.e., conversions). The third type of 
multiple-steps, trajectories involved changes from swampy 
Raphia forest (2008 ha in total) to agroforestry systems (i.e. 
conversions), and to dense forest (i.e. abandonment and 
regeneration); the fourth type of multiple steps trajecto-
ries involved degradation of agroforestry systems (882 ha 
in total) into grassland, and abandonment and regeneration 
(dense forest, and swampy flood forest); and the last multiple 
steps trajectories involved conversion of grassland (161 ha) 
into agroforestry systems land, and abandonment and regen-
eration (dense forest).

The increase in the number of arrows in Fig. 3b com-
pared to Fig. 3a clearly shows that the area and the different 
types of land cover increased but kept the same set of tra-
jectories in the period 2009–2018, compared to 2000–2009. 
Deforestation to grassland decreased between 2000 and 2018 
and entailed a total land area of ~ 1377 ha in 2000–2009 
and ~ 1191 ha in 2009–2018, which is about 6.76% and 
6.84% of the total land cover change area in these periods, 
respectively.

Moreover, degradation decreased from ~7904  ha or 
38.81% of the total land cover in the period 2000–2009 to 
~7757 ha or 44.54% in 2009–2018. Conversion from forest 
to agroforestry systems increased from ~734 ha or 3.60% in 
2000–2009 to ~1916 ha or 11% between these two periods. 
Other types of land cover change processes can be found in 
Table 5.

Discussion

We first evaluated how accurately the Landsat images classi-
fied the study area into different thematic areas. For the three 
periods, both images effectively classify the study area into 

Table 5  Quantified land use and land cover change processes based on remote sensing data that occurred in the periods 2000–2009, 2000–2009 
and 2000–2018

Land cover process Area (ha) Area (%) Annual change rate 
(%)

2000–2009 2009–2018 2000–2018 2000–2009 2009–2018 2000–2018

Deforestation 1377 1191 1481 6.76 6.84 6.86 0.68 0.76 0.38
Degradation 7904 7757 9240 38.81 44.54 42.81 3.88 4.95 2.38
Conversion 734 1916 2164 3.60 11.00 10.02 0.36 1.20 0.55
Restoration 7372 4283 5645 36.20 24.59 26.15 3.62 2.73 1.45
Abandonment, and regeneration 2491 1976 2820 12.23 11.35 13.07 1.22 1.26 0.72
Species colonisation and climatic 

conditions
488 293 233 2.40 1.68 1.08 0.24 0.19 0.06

Total land change 20,366 17,416 21,583
No change land 20,016 22,966 18,799
TOTAL 40,382 40,382 40,382 100.00 100.00 100.00
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six thematic maps. We then assess the dynamic change and 
change trajectories of LULC during two decades.

Landscape classification

The LULC types in the study area were interpreted on 
imagery by MLC supervised classification. With the overall 
accuracies and kappa statistics of the three periods LULC 
classification scheme all above 80% and 0.74, respectively, 
substantiating the ability of Landsat products to accurately 
classify tropical dense rainforest of Cameroon. However, 80 
and 83% accuracy of the 2000 and 2009 land cover maps, 
respectively, are acceptable but point towards a sub-optimal 
LULC classification, which may lead to a wrong interpreta-
tion of the timing of changes or even wrong trajectories. 
Moreover, the lack of a clear boundary between LULC in our 
forest was due to the complex vegetation structure and spe-
cies composition causing a major problem of relatively low 
accuracy for the two first-year periods: justifying thereby the 
misclassification between LULC (e.g. agroforestry systems 
land use types such as cocoa-based agroforestry systems, 
banana plantations and dense forest with high tree density, 
dense forest with low tree density, swampy Raphia forest, 
swamp floods forest and wooded savanna LULC types). 
These findings are in line with the findings of Lu et al. 
(2013) in Amazonia forests and of Zhang et al. (2016) in 
the forest of China. However, the high accuracy (89.45%) of 
LULC classification obtained for the 2018 year, using Land-
sat 8 OLI allow us to conclude that high-resolution satellite 
imagery is consequential to high ability LULC classification 
scheme, therefore, highlighting the unavoidable availability 
of high-resolution satellite images for efficiently monitoring, 
sustainable management of Congo Basin forests.

Dynamic and change trajectories of land use 
and land cover in Doume Communal Forest

Information on detailed LULC change trajectories is often 
required for spatio-temporal dynamics research and is often 
calculated using the post-classification method at the per-
pixel level as reported by several authors worldwide (Lam-
bin 2000; Kennedy et al. 2009; Hansen and Loveland 2012; 
Lu et al. 2014). First of all, the post-classification method at 
the overall scale, allows us to analyze the status and overall 
forest cover changes whereby the loss and gain of LULC in 
the DCF was realized. This study showed that the DCF is 
experiencing an essentially regressive evolution which was 
much more significant in dense forest with high tree density 
LULC. Indeed, from 2000 to 2009 this LULC loss approxi-
mately 5% of its areas in benefits principally to agrofor-
estry systems and dense forest with low tree density LULC 
types which gained 29 and 9% of their areas during the same 
periods, respectively. Several authors across Cameroon and 

Africa have reported a similar trend (Momo Solefack et al. 
2012; De Wasseige et al. 2014; Meli Fokeng and Meli Meli 
2015; Momo Solefack et al. 2018; Temgoua et al. 2018; Toh 
et al. 2018).

The overall-scale change detection results cannot provide 
the change trajectories, but the per-pixel based change detec-
tion analysis overcomes this shortcoming. Therefore, in this 
study, we have integrated pixel-to-pixel cross-tabulations of 
LULC change and our knowledge to generate a more com-
prehensive analysis of the main LULC change processes 
and trajectories in the DCF. Our findings show that most 
of the land cover changes between 2000 and 2018 involved 
degradation (~ 43% of total land cover change), restoration 
from dense forest with low trees density to those of high 
trees density (26%), conversion from forest to agroforestry 
systems (10%) and deforestation to Swampy Raphia forest 
and grassland (~ 7%). This high presence of forest degrada-
tion and conversion from forest to agroforestry systems may 
partly be related to the extensive and recurring population 
in the communal forest who practice agroforestry for their 
subsistence. Furthermore, the combined analyses showed 
that from 2000–2009 to 2009–2018 periods, a decreasing 
shift occurred in the main processes of forest degradation, 
deforestation but an increasing shift occurred from forest 
to agroforestry systems. This study points out that agrofor-
estry systems but not land use types of agroforestry sys-
tems are the main drivers of deforestation and conversion 
in the DCF. These findings are in line with the findings of 
Lu et al. (2013) in the Brazilian Amazon forest. This shift 
does not coincide totally with the process of forest classi-
fication into a communal forest: before 2000, the DCF was 
facing anthropogenic pressures and illegal logging, while 
after 2009, access to DFC was strictly prohibited to riparian 
population and that its management was subject to a well-
planned management. Therefore, we expected that we could 
have had regression of deforestation and conversion from 
forest to agroforestry systems during the second period of 
the study. This finding highlights the anthropogenic influ-
ence on forests even though access was strictly prohibited, 
thus dismissing the question on the distribution of the ben-
efits resulting from the management of the forest. The DFC 
is not the only communal forest in Cameroon facing this 
phenomenon because it has also been reported in Santchou 
Reserve by Meli Fokeng and Meli Meli (2015), in Koupa-
Matapit Gallery Forest by Momo Solefack et al. (2018), and 
in Mount Bamboutos Caldera by Toh et al. (2018).

Implications for sustainable management 
and conservation of forest

Our study shows that analyses of landscape trajectories can 
provide a more comprehensive overview on which land 
cover types are involved in other land cover change and 
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forest regressions and how this land cover interacts with 
one another. This is particularly important for spatial plan-
ning in tropical forests where agriculture develops rapidly 
(Lambin 1997, 2000; Lu et al. 2013). Conversions into agro-
forestry systems can be identified and monitored by such 
trajectory analyses, and subsequently, zoning conservation 
and management policies can be developed to guide these 
changes into more sustainable directions. This is particularly 
important since such changes can change the socio-cultural 
environment of the ecosystem, impact on the production of 
ecosystem services and, therefore, result in a loss of bio-
diversity and carbon pools. Therefore, it is essential and 
recommended that communities should be involved in the 
spatial planning and management process as they may play 
an important role in LULC change and may be affected by 
it. To reduce the pressures of the riparian population into 
the DFC, the managers could put in place some incentivized 
methods, for example by REDD+ or through subsidies for 
local food production.

Conclusions

Through the analysis of LULC change based on three dates 
of Landsat imagery in the Doume Communal Forest, this 
research highlights the necessity to investigate LULC change 
at multiple scales for a better understanding of the mecha-
nisms of LULC change and the effective use of the LULC 
results in multidisciplinary research. Therefore, this study 
enables us to identify the spatial patterns and LULC change 
trajectories. It also suggests the mechanisms related to 
LULC in DFC. It highlights the necessity for the availability 
of high-resolution satellite images for efficiently monitory 
and sustainable management of Congo Basin forests. This 
study showed a LULC change of about one-half of the study 
area in the period 2000–2009. Based on our quantitative 
and spatial analyses, forest degradation, restoration, con-
version of forest and grassland to agroforestry systems and 
deforestation to swampy Raphia forest and grassland were 
found to be the dominant LULC change processes causing 
reduction of forest cover and quality. In addition, the post-
classification based on per pixel scale showed that the differ-
ent types of LULC changes in the study area increased and 
involved a more diverse set of characteristic trajectories in 
the period 2009–2018, compared to the period 2000–2009. 
During 2000 and 2018, about 99% of the total area of LULC 
changed through multiple-step trajectories and 1% by one-
step trajectories, and most trajectories involved deforesta-
tion, degradation, conversion of forest and grassland to 
agroforestry systems land, and abandonment, regrowth 
and recolonization of the environment. Deforestation to 
grassland decreased between 2000 and 2018 and entailed a 
total land area of ~ 1377 ha in 2000–2009 and ~ 1191 ha in 

2009–2018 which is about 6.76 and 6.84%, respectively, of 
the total land cover change area in these periods. However, 
degradation increased from 38.8% of the total LULC change 
in the period 2000–2009 to 44.54% in 2009–2018. Conver-
sion from the forest and grassland to agroforestry systems 
increased from 3.60% in 2000–2009 to 11% in 2009–2018. 
The trajectory analyses showed that LULC change occurred 
mostly in multiple-step trajectories of degradation, defor-
estation and conversion; multiple step trajectories from the 
dense forest with high tree density to a dense forest with low 
tree density, grassland, swampy Raphia forest and further to 
agroforestry systems. Therefore, the trajectory analysis of 
this study showed important interlinkages between LULC. 
It is a necessity to further understand and account for such 
interlinkages and processes of change to guide management 
in more sustainable ways.

Acknowledgements The lead author is grateful for the PhD exchange 
scholarship given by the Transdisciplinary Training for Resource Effi-
ciency and Climate Change Adaptation in Africa (TRECCAFRICA 
II) project funded by the European Union. The research leading to 
these results has received financial funding from the British Ecologi-
cal Society (EA17/1005) and The Rufford Foundation (Grant agree-
ment N° 24,895-1), and field material funding from the IDEA WILD 
Foundation. We thank Dr Masha T. van der Sande for their comments 
and suggestions on the first manuscript of this paper. We are grateful 
to the Conservation and Sustainable Natural Ressources Management 
Network (CSNRM-Net) Association for their logistical and technical 
support during the entire study. The authors would like to thank the 
National Aeronautics and Space Administration (NASA), United States 
Geological Survey (USGS) for providing Landsat data. We would also 
thank Airbus Defense and Space through the project “Observation 
Spatiale des Forêts d’Afrique Centrale et de l’Ouest” (OSFACO) for 
providing SPOT 7 images. We are also grateful to Doume municipality 
for their logistical support during the fieldwork. Specifically, we thank 
the mayoress of the Doume municipality Mrs Mpans Giselle Rose and 
her secretary Mrs Ayinda Yannick for their administrative diligence 
and for providing us with field permits. We, furthermore, express our 
thanks to all those involved in fieldwork and data collection as well as 
community members of the different village of Doume council.

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interest.

References

Anonymous (2015) Management plan of the Doume Communal Forest. 
Doume Council, Yaounde Cameroon

Basnet B, Vodacek A (2015) Tracking land use/land cover dynamics in 
cloud prone areas using moderate resolution satellite data: a case 
study in Central Africa remote sensing 7:6683

Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) 
Impacts of climate change on the future of biodiversity. Ecol Lett 
15:365–377. https ://doi.org/10.1111/j.1461-0248.2011.01736 .x

CBD (2005) Handbook of the convention on biological diversity 
including its Cartagena protocol on biosafety, 3rd edn. Secre-
tariat of the Convention on Biological Diversity, United Nations, 
Montreal

Author's personal copy

https://doi.org/10.1111/j.1461-0248.2011.01736.x


1813Modeling Earth Systems and Environment (2019) 5:1801–1814 

1 3

Chitade AZ, Katiyar SK (2012) Multiresolution and multispectral 
data fusion using discrete wavelet transform with IRS images: 
Cartosat-1, IRS LISS III and LISS IV. J Indian Soc Remote Sens 
40:121–128. https ://doi.org/10.1007/s1252 4-011-0140-0

Congalton RG (1991) A review of assessing the accuracy of classifica-
tions of remotely sensed data. Remote Sens Environ 37:35–46. 
https ://doi.org/10.1016/0034-4257(91)90048 -B

Davies-Barnard T, Valdes PJ, Singarayer JS, Wiltshire AJ, Jones CD 
(2015) Quantifying the relative importance of land cover change 
from climate and land use in the representative concentration 
pathways. Glob Biogeochem Cycles 29:842–853. https ://doi.
org/10.1002/2014G B0049 49

De Wasseige C, Devers D, Marcken P, Eba’a Atyi R, Nasi R, Mayaux 
P (2009) The forests of the Congo Basin—state of the forest 2008. 
Office des publications de l’Union Europeenne, Brussels

De Wasseige C, Flynn J, Louppe D, Hiol Hiol F, Mayaux P (2014) The 
forests of the Congo Basin—state of the forest 2013. Weyrich, 
Neufchâteau

Dimyati MUH, Mizuno KEI, Kobayashi S, Kitamura T (1996) An 
analysis of land use/cover change in Indonesia. Int J Remote Sens 
17:931–944. https ://doi.org/10.1080/01431 16960 89490 56

Ehlers M (2004) Spectral characteristics preserving image fusion based 
on Fourier domain filtering. In: Remote Sensing for Environmen-
tal Monitoring, GIS Applications, and Geology IV, Maspalomas, 
Canary Islands, Spain, 2004. Society of Photo-Optical Instrumen-
tation Engineers (SPIE), p 13. https ://doi.org/10.1117/12.56516 0 

Ellis EC, Goldewijk KK, Siebert S, Lightman D, Ramankutty N 
(2010) Anthropogenic transformation of the biomes, 1700 to 
2000. Glob Ecol Biogeogr 19:589–606. https ://doi.org/10.111
1/j.1466-8238.2010.00540 .x

FAO (2006) Global forest resources assessment 2005: progress towards 
sustainable forest management Rome. United Nations Food and 
Agriculture Organization, Rome

FAO (2011) State of the world’s forests. Food and Agriculture Organi-
zation of United Nations (FAO), Rome

Foley JA et  al (2005) Global consequences of land use Science 
309:570–574. https ://doi.org/10.1126/scien ce.11117 72

Geist HJ, Lambin EF (2002) Proximate causes and underlying driving 
forces of tropical deforestation. BioScience 52:143. https ://doi.
org/10.1641/0006-3568(2002)052%5b014 3:pcaud f%5d2.0.co;2

Ghilardi A et al (2016) Spatiotemporal modeling of fuelwood envi-
ronmental impacts: towards improved accounting for non-renew-
able biomass. Environ Model Softw 82:241–254. https ://doi.
org/10.1016/j.envso ft.2016.04.023

Gibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Raman-
kutty N, Foley JA (2010) Tropical forests were the primary 
sources of new agricultural land in the 1980s and 1990s. Proc 
Natl Acad Sci USA 107:16732–16737. https ://doi.org/10.1073/
pnas.09102 75107 

Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017) Mod-
eling the spatio-temporal dynamics and evolution of land use and 
land cover (1984–2015) using remote sensing and GIS in Raya, 
Northern Ethiopia. Model Earth Syst Environ 3:1285–1301. https 
://doi.org/10.1007/s4080 8-017-0375-z

Grainger A (2008) Difficulties in tracking the long-term global trend in 
tropical forest area. Proc Natl Acad Sci USA 105:818–823. https 
://doi.org/10.1073/pnas.07030 15105 

Grainger A (2010) Uncertainty in the construction of global knowledge 
of tropical forests. Prog Phys Geogr Earth Environ 34:811–844. 
https ://doi.org/10.1177/03091 33310 38732 6

Hansen MC, Loveland TR (2012) A review of large area monitoring 
of land cover change using Landsat data. Remote Sens Environ 
122:66–74. https ://doi.org/10.1016/j.rse.2011.08.024

Harris NL et al (2012) Baseline map of carbon emissions from defor-
estation in tropical regions. Science 336:1573–1576. https ://doi.
org/10.1126/scien ce.12179 62

Kennedy RE, Townsend PA, Gross JE, Cohen WB, Bolstad P, 
Wang YQ, Adams P (2009) Remote sensing change detection 
tools for natural resource managers: understanding concepts 
and tradeoffs in the design of landscape monitoring projects. 
Remote Sens Environ 113:1382–1396. https ://doi.org/10.1016/j.
rse.2008.07.018

Kibret KS, Marohn C, Cadisch G (2016) Assessment of land use and 
land cover change in South Central Ethiopia during four decades 
based on integrated analysis of multi-temporal images and geo-
spatial vector data. Remote Sens Appl Soc Environ 3:1–19. https 
://doi.org/10.1016/j.rsase .2015.11.005

Kindu M, Schneider T, Döllerer M, Teketay D, Knoke T (2018) Sce-
nario modelling of land use/land cover changes in Munessa–
Shashemene landscape of the Ethiopian highlands. Sci Total 
Environ 622–623:534–546. https ://doi.org/10.1016/j.scito 
tenv.2017.11.338

Lambin EF (1997) Modelling and monitoring land-cover change 
processes in tropical regions. Prog Phys Geogr Earth Environ 
21:375–393. https ://doi.org/10.1177/03091 33397 02100 303

Lambin EF (2000) Land-cover-change trajectories in southern Cam-
eroon. AU Mertens Benoît Ann Assoc Am Geogr 90:467–494. 
https ://doi.org/10.1111/0004-5608.00205 

Lambin EF et al (2001) The causes of land-use and land-cover change: 
moving beyond the myths. Glob Environ Change 11:261–269. 
https ://doi.org/10.1016/S0959 -3780(01)00007 -3

Le Quéré C et al (2013) The global carbon budget 1959–2011. Earth 
Syst Sci Data 5:165–185. https ://doi.org/10.5194/essd-5-165-2013

Le Quéré C et al (2016) Global carbon budget 2016. Earth Syst Sci 
Data 8:605–649. https ://doi.org/10.5194/essd-8-605-2016

Le Toan T, Quegan S, Davidson M et al (2011) The biomass mission: 
mapping global forest biomass to better understand the terrestrial 
carbon cycle. Remote Sens Environ 115:2850–2860

Letouzey R (1985) Phytogeographic map of Cameroon at 1: 500 000, 
accompanied by: Notice of the phytogeographic map of Cameroon 
at 1: 500 000. 4) TV: Domain of dense rainforest always green 
(Pages 95 to 142 with groupings nº 185 to 267). Institute of the 
International Vegetation Map, Toulouse

Lewis SL et al (2009) Increasing carbon storage in intact African tropi-
cal forests. Nature 457:1003–1006

Li G, Lu D, Moran E, Hetrick S (2011) Land-cover classification in 
a moist tropical region of Brazil with Landsat TM imagery. Int 
J Remote Sens 32:8207–8230. https ://doi.org/10.1080/01431 
161.2010.53283 1

Lu D, Mausel P, Brondízio E, Moran E (2004) Change detec-
tion techniques. Int J Remote Sens 25:2365–2401. https ://doi.
org/10.1080/01431 16031 00013 9863

Lu D, Batistella M, Moran E, De Miranda E (2005) A comparative 
study of terra ASTER, landsat TM, and SPOT HRG data for 
land cover classification in the Brazilian Amazon. In: WMSCI 
2005—the 9th world multi-conference on systemics, cybernetics 
and informatics, proceedings, Orlando, Florida, USA, 10–13 Jul 
2005, pp 411–416

Lu D, Li G, Moran E, Dutra L, Batistella M (2011) A comparison of 
multisensor integration methods for land cover classification in 
the Brazilian Amazon. GISci Remote Sens 48:345–370. https ://
doi.org/10.2747/1548-1603.48.3.345

Lu D, Hetrick S, Moran E, Li G (2012a) Application of time series 
landsat images to examining land-use/land-cover dynamic 
change. Photogramm Eng Remote Sens 78:747–755. https ://doi.
org/10.14358 /PERS.78.7.747

Lu D, Batistella M, Li G, Moran E, Hetrick S, Freitas CdC, Dutra LV, 
Sant’Anna SJS (2012b) Land use/cover classification in the Brazil-
ian Amazon using satellite images. Pesq Agropec Bras 47:1185–
1208. https ://doi.org/10.1590/S0100 -204x2 01200 09000 04

Lu D, Li G, Moran E, Hetrick S (2013) Spatiotemporal analysis of 
land use and land cover change in the Brazilian Amazon. Int J 

Author's personal copy

https://doi.org/10.1007/s12524-011-0140-0
https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1002/2014GB004949
https://doi.org/10.1002/2014GB004949
https://doi.org/10.1080/01431169608949056
https://doi.org/10.1117/12.565160
https://doi.org/10.1111/j.1466-8238.2010.00540.x
https://doi.org/10.1111/j.1466-8238.2010.00540.x
https://doi.org/10.1126/science.1111772
https://doi.org/10.1641/0006-3568(2002)052%5b0143:pcaudf%5d2.0.co;2
https://doi.org/10.1641/0006-3568(2002)052%5b0143:pcaudf%5d2.0.co;2
https://doi.org/10.1016/j.envsoft.2016.04.023
https://doi.org/10.1016/j.envsoft.2016.04.023
https://doi.org/10.1073/pnas.0910275107
https://doi.org/10.1073/pnas.0910275107
https://doi.org/10.1007/s40808-017-0375-z
https://doi.org/10.1007/s40808-017-0375-z
https://doi.org/10.1073/pnas.0703015105
https://doi.org/10.1073/pnas.0703015105
https://doi.org/10.1177/0309133310387326
https://doi.org/10.1016/j.rse.2011.08.024
https://doi.org/10.1126/science.1217962
https://doi.org/10.1126/science.1217962
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1016/j.rse.2008.07.018
https://doi.org/10.1016/j.rsase.2015.11.005
https://doi.org/10.1016/j.rsase.2015.11.005
https://doi.org/10.1016/j.scitotenv.2017.11.338
https://doi.org/10.1016/j.scitotenv.2017.11.338
https://doi.org/10.1177/030913339702100303
https://doi.org/10.1111/0004-5608.00205
https://doi.org/10.1016/S0959-3780(01)00007-3
https://doi.org/10.5194/essd-5-165-2013
https://doi.org/10.5194/essd-8-605-2016
https://doi.org/10.1080/01431161.2010.532831
https://doi.org/10.1080/01431161.2010.532831
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.1080/0143116031000139863
https://doi.org/10.2747/1548-1603.48.3.345
https://doi.org/10.2747/1548-1603.48.3.345
https://doi.org/10.14358/PERS.78.7.747
https://doi.org/10.14358/PERS.78.7.747
https://doi.org/10.1590/S0100-204x2012000900004


1814 Modeling Earth Systems and Environment (2019) 5:1801–1814

1 3

Remote Sens 34:5953–5978. https ://doi.org/10.1080/01431 
161.2013.80282 5

Lu D, Li G, Moran E (2014) Current situation and needs of change 
detection techniques. Int J Image Data Fusion 5:13–38. https ://
doi.org/10.1080/19479 832.2013.86837 2

Malhi Y, Gardner TA, Goldsmith GR, Silman MR, Zelazowski P 
(2014) Tropical forests in the anthropocene. Annu Rev Envi-
ron Resour 39:125–159. https ://doi.org/10.1146/annur ev-envir 
on-03071 3-15514 1

Marchese C (2015) Biodiversity hotspots: a shortcut for a more com-
plicated concept. Glob Ecol Conserv 3:297–309. https ://doi.
org/10.1016/j.gecco .2014.12.008

Meli Fokeng R, Meli Meli V (2015) Modeling drivers of forest cover 
change in the Santchou wildlife reserve, west Cameroon using 
remote sensing and land use dynamics degree indexes. Can J Trop 
Geogr 2:29–42

Miheretu BA, Yimer AA (2017) Land use/land cover changes and 
their environmental implications in the Gelana sub-watershed of 
Northern highlands of Ethiopia. Environ Syst Res 6:7. https ://doi.
org/10.1186/s4006 8-017-0084-7

Momo Solefack MC, Chabrerie O, Gallet-Moron E, Nkongmeneck 
B-A, Leumbe ONL, Decocq G (2012) Analysing deforestation by 
remote sensing coupled with structural equation models: example 
of the cloud forest of mount Oku (Cameroon). Acta Bot Gallica 
159:451–466. https ://doi.org/10.1080/12538 078.2012.75058 3

Momo Solefack MC, Njouonkouo AL, Temgoua LF, Djouda Zangmene 
R, Wouokoue Taffo JB, Ntoukpa M (2018) Land use/land cover 
change and anthropogenic causes around Koupa-Matapit gallery 
forest, West-Cameroon. J Geogr Geol 10:56

Myers N (1988) Threatened biotas: “Hot spots” in tropical forests. 
Environmentalist 8:187–208. https ://doi.org/10.1007/bf022 40252 

Pendrill F, Persson UM (2017) Combining global land cover datasets 
to quantify agricultural expansion into forests in Latin America: 
limitations and challenges. PLoS One 12:e0181202. https ://doi.
org/10.1371/journ al.pone.01812 02

Pradhan B, Lee S, Mansor S, Buchroithner M, Jamaluddin N, Khu-
jaimah Z (2008) Utilization of optical remote sensing data and 
geographic information system tools for regional landslide haz-
ard analysis by using binomial logistic regression model. J Appl 
Remote Sens 2(1):1–11. https ://doi.org/10.1117/1.30265 36

Ramankutty N, Gibbs HK, Achard F, Defries R, Foley JA, Houghton 
RA (2007) Challenges to estimating carbon emissions from tropi-
cal deforestation. Glob Change Biol 13:51–66. https ://doi.org/10.
1111/j.1365-2486.2006.01272 .x

Rawat JS, Kumar M (2015) Monitoring land use/cover change using 
remote sensing and GIS techniques: a case study of Hawalbagh 
block, district Almora, Uttarakhand, India. Egypt J Remote Sens 
Space Sci 18:77–84. https ://doi.org/10.1016/j.ejrs.2015.02.002

Sangermano F, Toledano J, Eastman JR (2012) Land cover change 
in the Bolivian Amazon and its implications for REDD+ and 
endemic biodiversity. Landsc Ecol 27:571–584. https ://doi.
org/10.1007/s1098 0-012-9710-y

Sebastian O, Sibyll S, Wolfgang L, Dieter G (2015) Three centuries of 
dual pressure from land use and climate change on the biosphere. 
Environ Res Lett 10:044011

Singh SK, Laari PB, Mustak S, Srivastava PK, Szabó S (2017) Model-
ling of land use land cover change using earth observation data-
sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 
https ://doi.org/10.1080/10106 049.2017.13433 90

Smail RA, Lewis DJ (2009) Forest-land conversion, ecosystem ser-
vices, and economic issues for policy: a review. U.S. Department 
of Agriculture, Forest Service, Pacific Northwest Research Sta-
tion, Corvallis

Temgoua LF, Momo Solefack MC, Nguimdo Voufo V, Tagne Belibi C, 
Tanougong A (2018) Spatial and temporal dynamic of land-cover/
land-use and carbon stocks in Eastern Cameroon: a case study of 
the teaching and research forest of the University of Dschang. 
For Sci Technol 14:181–191. https ://doi.org/10.1080/21580 
103.2018.15207 43

Toh FA, Angwafo T, Ndam LM, Antoine MZ (2018) The socio-eco-
nomic impact of land use and land cover change on the inhabit-
ants of Mount Bambouto Caldera of the Western Highlands of 
Cameroon. Adv Remote Sens 7:25–45. https ://doi.org/10.4236/
ars.2018.71003 

World Resources Institute UNEP, United Nations Development Pro-
gramme & World Bank (1998) World Resources 1998–99. Oxford 
University Press, New York

Wu M, Schurgers G, Ahlström A, Rummukainen M, Miller PA, Smith 
B, May W (2017) Impacts of land use on climate and ecosystem 
productivity over the Amazon and the South American continent. 
Environ Res Lett 12:054016

Zari MP (2014) Ecosystem services analysis in response to biodiver-
sity loss caused by the built environment. Surv Perspect Integr 
Environ Soc 7:1–14

Zhang Z, Zang R, Wang G, Huang X (2016) Classification of land-
scape types based on land cover, successional stages and plant 
functional groups in a species-rich forest in Hainan Island, China. 
Trop Conserv Sci 9:135–152. https ://doi.org/10.1177/19400 82916 
00900 107

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Author's personal copy

https://doi.org/10.1080/01431161.2013.802825
https://doi.org/10.1080/01431161.2013.802825
https://doi.org/10.1080/19479832.2013.868372
https://doi.org/10.1080/19479832.2013.868372
https://doi.org/10.1146/annurev-environ-030713-155141
https://doi.org/10.1146/annurev-environ-030713-155141
https://doi.org/10.1016/j.gecco.2014.12.008
https://doi.org/10.1016/j.gecco.2014.12.008
https://doi.org/10.1186/s40068-017-0084-7
https://doi.org/10.1186/s40068-017-0084-7
https://doi.org/10.1080/12538078.2012.750583
https://doi.org/10.1007/bf02240252
https://doi.org/10.1371/journal.pone.0181202
https://doi.org/10.1371/journal.pone.0181202
https://doi.org/10.1117/1.3026536
https://doi.org/10.1111/j.1365-2486.2006.01272.x
https://doi.org/10.1111/j.1365-2486.2006.01272.x
https://doi.org/10.1016/j.ejrs.2015.02.002
https://doi.org/10.1007/s10980-012-9710-y
https://doi.org/10.1007/s10980-012-9710-y
https://doi.org/10.1080/10106049.2017.1343390
https://doi.org/10.1080/21580103.2018.1520743
https://doi.org/10.1080/21580103.2018.1520743
https://doi.org/10.4236/ars.2018.71003
https://doi.org/10.4236/ars.2018.71003
https://doi.org/10.1177/194008291600900107
https://doi.org/10.1177/194008291600900107

	Land use and land cover changes in Doume Communal Forest in eastern Cameroon: implications for conservation and sustainable management
	Abstract
	Introduction
	Materials and methods
	Study area
	Data collection and research methods
	Satellite images
	Field data collection and land useland cover classification
	Image pre-processing
	Landscape classification
	Supervised classification 
	Post classification 
	Analysis to quantify land use and land cover change and trajectories 



	Results
	Land useland cover classification and accuracies results
	Status and dynamic of land use and land cover in Doume Communal Forest
	Change trajectories of land use and land cover in Doume Communal Forest
	Quantification and schematic presentation of land use and land cover change processes and trajectories

	Discussion
	Landscape classification
	Dynamic and change trajectories of land use and land cover in Doume Communal Forest
	Implications for sustainable management and conservation of forest

	Conclusions
	Acknowledgements 
	References




