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INTRODUCTION

Biological invasions threaten biodiversity and eco-
system function (Strayer 2012) and can impact eco-
system integrity, goods, and services (Pejchar &
Mooney 2009). Invasive species can change entire
ecosystems by impacting ecological processes, espe-
cially when they differ from natives in resource ac -
quisition or use, alter trophic pathways, or change
disturbance regimes (Vitousek 1990). Understanding

how invasive species affect ecosystem processes may
be central to managing invasions, particularly in eco-
systems subject to multiple stressors, such as coral
reefs (Mumby & Steneck 2008).

Reef-building corals create complex physical struc-
tures that support high levels of associated biodiver-
sity (Graham & Nash 2013, Rogers et al. 2014). Coral
mortality has increased substantially in the last 3
decades due to a combination of stressors (e.g. global
warming, acidification, pollution, diseases, and over-
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ABSTRACT: Understanding how invasive species affect ecosystem processes of coral reefs can
assist reef conservation. Recruitment is a key population parameter and an important considera-
tion in the invasive potential of non-native species. We evaluated the effects of the invasive corals
Tubastraea tagusensis and T. coccinea on native coral recruitment and adult populations within
distinct habitats in a southwestern Atlantic reef off the Brazilian coast. We investigated the rela-
tionships adult−adult and adult−recruit between invasive and native corals. Sixty experimental
plates (20 × 20 cm) were installed for 13 mo in 2 reef habitats (reef wall and reef top) along a gra-
dient of Tubastraea invasion. Using zero-inflated negative binomial regression models, we found
that native recruit density declined with increased cover of adult invasive corals. Additionally,
native adult coral cover also declined with elevated invasive cover. No significant differences
were observed for native recruits (density) between habitats (reef wall and reef top) along the gra-
dient of invasion. However, differences of native and invasive adult coral cover were found
between habitats, with native coral more often found on the reef top and invasive coral widely
dominant on the reef wall. Furthermore, the relationship between invasive recruitment and adult
cover was significant on the reef wall. These findings reveal that coral recruitment is generally
inversely related to the cover of the invasive coral Tubastraea. Unless management actions are
undertaken to slow the invasion of Tubastraea, it will likely continue to impact native corals and
degrade the natural values of the reef ecosystems they support.
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fishing), to which species invasion has been a key
contributor to coral reef decline in some parts of the
world (Hughes & Connell 1999, Gardner et al. 2003,
Creed 2006, Bruno & Selig 2007, Miranda et al.
2016). Although it is fundamental to understanding
the mechanisms behind declining coral reef function-
ing and resilience, the effects of reef invaders on
coral recruitment have not been evaluated to the
same extent as impacts from other stressors (Miranda
et al. 2016).

Coral recruitment is a complex process involving a
bipartite life history with pelagic larvae and benthic
recruits (Ritson-Williams et al. 2009, Doropoulos et
al. 2017). Following their settlement on benthic sub-
strata, the survival and growth of coral larvae is often
influenced by environmental factors (e.g. tempera-
ture and wave action), species-specific characteris-
tics, predation, and the presence of other benthic
organisms (Maida et al. 1995, Hughes & Connell
1999, Vermeij et al. 2006). It is well known that once
benthic invaders (e.g. oysters and barnacles) have
been established, occupying the primary substratum,
they may influence recruitment patterns of native
species by reducing the available space, intensifying
competition, or increasing mortality of newly settled
native recruits (Wilkie et al. 2013, Vye et al. 2017).
However, the potential effects of hard coral invaders
on native coral recruitment are virtually unknown.

In reef ecosystems, corals represent a group with
unusual examples of invasive species (Coles &
Eldredge 2002). However, azooxanthellate corals of
the genus Tubastraea, originally from the Pacific,
have successfully invaded Atlantic reefs (Sampaio et
al. 2012), threatening the functioning of ecosystem
processes (Miranda et al. 2016, Creed et al. 2017). In
the southwestern Atlantic, the non-native sun corals
Tubastraea coccinea and T. tagusensis were first
reported in the 1980s. Since their establishment, sun
corals have extended their distribution along the
Brazilian coast on rocky and coral reefs, where they
have dominated (e.g. 80−100% cover) the hard sub-
stratum in some reef areas (Creed et al. 2017). These
invasive corals have increased mortality rates on
some native coral species and altered the benthic
community structure on Brazilian reefs (Creed 2006,
Lages et al. 2011, dos Santos et al. 2013, Miranda et
al. 2016). The success of Tubastraea spp. as an inva-
sive species has, in part, been associated with com-
petitive and reproductive advantages over native
corals (Miranda et al. 2016).

Sun corals have a relatively high reproductive out-
put compared to most native corals, including higher
oocyte production, early reproductive age, short

embryonic incubation time, and hermaphroditism
(Szmant 1991, Pires et al. 1999, de Barros et al. 2003,
Neves & Da Silveira 2003, Glynn et al. 2008, de Paula
et al. 2014, Mizrahi et al. 2014a). They also have at
least 2 reproductive peaks per year (Glynn et al.
2008) but can continuously reproduce throughout the
year (de Paula et al. 2014). In contrast, native corals
usually reproduce only once per year. Furthermore,
Tubastraea spp. planulae can remain competent in
the water column for 3 to 14 d (Glynn et al. 2008, de
Paula et al. 2014, Mizrahi et al. 2014a) and can settle
on a range of substrata and orientations but particu-
larly on vertical surfaces (e.g. reef walls) (Creed & de
Paula 2007, Mizrahi et al. 2014b, 2017, Miranda et al.
2016). Vertical surfaces in benthic habitats usually
are darker than horizontal surfaces, which can favour
the establishment of azooxanthellate species such
as Tubastraea in Brazil (Creed & de Paula 2007,
Miranda et al. 2016, Mizrahi et al. 2017). Tubastraea
spp. can also increase the production of allelochemi-
cal substances in response to competition with coral
recruits of different species (Koh & Sweatman 2000,
Lages et al. 2012). Thus, understanding how sun
corals and habitat affect coral recruitment patterns is
important to the evaluation of invasion impacts on
coral reefs and their associated ecosystem services
and functions.

Here, a field experiment was carried out to evalu-
ate whether the effects of sun coral invasions can be
related to recruitment patterns of native coral spe-
cies. Specifically, we tested the hypothesis that ele-
vated invasive adult coral cover will reduce native
and increase invasive recruitment density on experi-
mental settlement plates. Additionally, we also tested
the hypothesis that Tubastraea spp. recruitment will
be higher on vertical (reef wall) than on horizontal
(reef top) habitats.

MATERIALS AND METHODS

Study site

The field experiment ran from December 2015 to
January 2017 (13 mo) at Cascos Reef (13° 07’ S,
38° 38’ W), a coral reef complex in the outer part of
Todos os Santos Bay, Brazil (Fig. 1). The reefs consist
of patches 11 to 13 m high and 1 to 100 m long,
located around 20 m deep. These reefs have reef tops
(horizontal surfaces; 11−13 m deep) and near-vertical
walls (vertical surfaces; 12−20 m deep) (Miranda et
al. 2016). The benthic communities of those reefs
comprise algal turfs, crustose coralline algae, her-
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matypic corals (Montastraea cavernosa, Madracis de -
cactis, Mussismilia hispida, Mussismilia leptophylla,
Siderastraea stellata, Phyllangia americana, Astran-
gia spp., Meandrina braziliensis, Millepora alcicor-
nis), sponges, macroalgae, octocorals, ascidians, and
bryozoans. Sun corals Tubastraea tagusensis and T.
coccinea (hereafter denoted as Tubastraea) were dis-
tributed along the reef, with average cover ranging
from 1 to 21% (Miranda et al. 2018).

Experimental design

To evaluate the effect of sun coral invasion and
habitat on recruitment patterns, 60 settlement plates
were attached to the reef substrate (n = 30 on the hor-
izontal reef tops in 11−13 m depth and n = 30 on the
vertical reef walls in 12−15 m depth). Settlement plates
were randomly positioned along the study site, which
had a gradient of Tubastraea cover that ranged be -
tween 1 and 21% in different reef zones (Miranda et
al. 2018). Each settlement plate was composed of 2
polyethylene sheets (approximately 0.20 × 0.20 m)
fixed with a steel screw (0.25 m long × 0.008 m thick)
(Fig. 1b). Settlement plates were attached at least 5 m
apart from each other within each habitat (reef top
and reef wall).

At the end of the experiment, 15 plates were re -
covered from the reef wall and 11 plates were re -
covered from the reef top. The remaining plates
could not be found despite extensive searching. The
recovered plates were transported in seawater to
the laboratory and stored in a freezer at −1°C for
24 h. Both sides of each plate were inspected under

a stereomicroscope (Leica LED2500), and all recruits
of native and invasive corals were quantified and
identified to the lowest possible taxonomic level
using available literature.

Adult coral cover patterns around settlement plates

To estimate the cover of the adult coral population
on natural substrates, 4 photo-quadrats (0.25 × 0.25 m)
were taken around 1 m of each settlement plate re -
covered (104 photos in total). This sampling method
was developed to account for the gregarious nature
of Tubastraea on southwestern Atlantic reefs (de
Paula & Creed 2005, Mizrahi et al. 2014b). Photo-
graphs were taken using a digital camera (Canon
G12) and analysed using the software Coral Point
Count with Extensions (www.nova.edu/ocean/cpce/)
(Kohler & Gill 2006). Adult coral cover was estimated
using 20 randomly distributed points per photo-
quadrat, totalling 80 points (4 photo-quadrats) around
each settlement plate. Coral cover was represented
by the total number of points under which it was
observed, and these count data were used for statisti-
cal analysis.

Data analysis

To model the relationship between invasive coral
cover and reef habitat type (reef wall and reef top)
(predictor variables) on native recruit density, inva-
sive recruit density, and native coral cover (response
variables), we used zero-inflated negative binomial
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Fig. 1. Study region and recruitment experiment: (a) location of the study site Cascos Reef (indicated by red circle) at Todos os
Santos Bay, Brazil; (b) experimental unit fixed in the study site; and (c) experimental plate showing Tubastraea spp. recruits 

(bright orange polyps) and other benthic organisms after 13 mo. Photos by Ricardo J. Miranda
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(ZINB) regressions. This model was also used to test
for relationships between native adult coral cover
(predictor variable) on native recruit density (response
variable). ZINB was ideal for this analysis because (1)
the response variable was continuous and overdis-
persed (i.e. the variance exceeds the mean) due to
the natural aggregated distribution of invasive corals
(Creed & de Paula 2007, Mizrahi et al. 2014b, Miranda
et al. 2016) and (2) coral settlement samples often
have an excess of zeros due to stochasticity of coral
recruitment. The ZINB model accounts for the excess
of zeros in the sample data, by modelling zeros as a
mixture arising from a dual process. The first process
was from the low detection probability, due to a lack
of availability of competent larvae and/or clumped or
aggregated distribution patterns, or even a physical
factor, and the second was from the predictor vari-
ables. The data in the binomial process are divided
into a zero mass component, containing only zeros
from the aggregated distribution, and a count com-
ponent that may also contain zeros as well as other
values, with the count component linked and mod-
elled using an appropriate count variance structure
(Zuur et al. 2009).

ZINB was compared using Chi-square for the null
model. The interaction term of invasive coral cover
with the covariate habitat (fixed factor, 2 levels: top
and wall) was included because there is a marked
difference in the orientation and light between habi-
tats (top and wall). Thus, invasive coral cover and
habitat could affect the overall outcome (i.e. the in -
fluence of invasive coral cover could be habitat
dependent). All analyses were performed using R
software (R Development Core Team 2008); the
packages bbmle, MASS, ggplot2, pscl, and boot were
used for the ZINB model.

RESULTS

Coral recruitment patterns

A total of 243 coral recruits were identified on the
settlement plates after being deployed for 13 mo. Of
these, 23 were from native corals (9.5%) and 220 were
from the invasive Tubastraea (90.5%) (Table 1). Most
settlement plates (62%, n = 16), however, did not have
coral recruits. The genus and family of coral recruits
identified on the settlement plates were Tubastraea
spp., Astrangia spp., Siderastraea spp., and Faviidae.

Adult coral cover patterns

Overall, adult corals occupied 25.3 ± 2.8% (mean ±
SE) of the natural substrate (Table 1). Native coral
cover was 13.0 ± 3.7% of the total area surveyed and
comprised M. cavernosa (9.3 ± 2.5%), M. decactis
(2.1 ± 0.9%), Siderastraea spp. (1.2 ± 0.7%), and M.
hispida (0.4 ± 0.2%). The average native coral cover
was 8.1 ± 2.5% on the reef wall and 18.7 ± 5.3% at
the reef top. In contrast, invasive coral cover repre-
sented 12.3 ± 2.6% of the total area surveyed, of
which 11.7 ± 2.5% was T. tagusensis and 0.6 ± 0.3%
was T. coccinea. In terms of the 2 habitats, Tubas-
traea occupied 13.4 ± 3.7% of the reef walls and 10.5
± 3.4% of the reef top.

Effects of invasive adult cover on coral recruitment
(native and invasive) and on native adult cover

Native recruit density and adult cover were nega-
tively related to Tubastraea adult cover on the sur-
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Recruits Adult cover
Species Ind. Density (ind. 0.04 m−2) Points %

Total Wall Top Total Wall Top Total Wall Top Total Wall Top

Native corals 23 16 7 0.9 1.5 0.5 9.9 ± 2.9 6.4 ± 1.9 14.7 ± 4.2 13.0 ± 3.7 8.1 ± 2.5 18.7 ± 5.3
Montastraea cavernosa* 5 4 1 0.2 0.4 0.1 7.2 ± 2.0 3.7 ± 1.6 12.0 ± 3.7 9.3 ± 2.5 4.7 ± 2.1 15.2 ± 4.6
Madracis decactis 0 0 0 0.0 0.0 0.0 1.4 ± 0.7 2.4 ± 1.1 0.0 ± 0.0 2.1 ± 0.9 3.1 ± 1.4 0.0 ± 0.0
Siderastraea spp. 4 4 0 0.2 0.4 0.0 1.0 ± 0.5 0.3 ± 0.2 1.9 ± 1.1 1.2 ± 0.7 0.3 ± 0.2 2.5 ± 1.4
Mussismilia hispida 0 0 0 0.0 0.0 0.0 0.3 ± 0.2 0.0 ± 0.0 0.8 ± 0.5 0.4 ± 0.2 0.0 ± 0.0 1.0 ± 0.6
Astrangia spp. 14 8 6 0.5 0.7 0.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Invasive corals 220 134 86 8.5 12.2 5.7 9.6 ± 2.0 10.3 ± 2.8 8.5 ± 2.6 12.3 ± 2.6 13.4 ± 3.7 10.5 ± 3.4
Tubastraea tagusensis − − − − − − 9.1 ± 1.9 9.7 ± 2.7 8.3 ± 2.6 11.7 ± 2.5 12.6 ± 3.5 10.5 ± 3.3
Tubastraea coccinea − − − − − − 0.5 ± 0.2 0.6 ± 0.3 0.3 ± 0.2 0.6 ± 0.3 0.8 ± 0.4 0.4 ± 0.2
Scleractinian corals (total) 239 150 93 9.2 13.6 6.2 19.5 ± 2.2 16.7 ± 2.3 23.3 ± 3.8 25.3 ± 2.8 21.6 ± 3.0 29.3 ± 4.9

Table 1. Recruits (total individuals and density) and adult cover (points and percentage, mean ± SE) of coral species in different reef 
habitats (wall and top). (*) Recruits identified up to family level (Faviidae); (−) no data
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rounding reef (Table 2, Fig. 2). The effect of habitat
was significant for the relationship between adult
cover of native and invasive corals. However, no
habitat effect was found for the relationship between
native recruits and invasive adult cover, probably
due to the low number of recruits in both habitats.
There was no significant relationship between inva-
sive recruits and adult cover, meaning that the model
without an interaction (Tubastraea adult cover effect)
did not explain more variance in the data than null
models (no effect) (Table 2, Fig. 3a). However, the
relationship between invasive recruit density and
adult cover had a significant interaction with habitat,
suggesting that the model with the interaction term
(Tubastraea adult cover × habitat) better explains the
patterns with adult cover than a model without an
interaction term.

Effects of native adult cover on native coral
recruitment

There was no significant relationship between
native recruit density and adult cover. Similarly,
there were no significant effects of habitat or no sig-
nificant interactions (adult cover × habitat) associ-
ated with native coral recruitment (Table 2, Fig. 3b).

DISCUSSION

The effects of sun coral invasion likely change na-
tive coral recruitment patterns. The numbers of
Tubastraea recruits on settlement plates and adults
on the natural substrate were greater than those of
native corals on vertical walls. This supply-side ad-
vantage (sensu Lewin 1986) can contribute to Tubas-
traea dominance in adult cover over native coral spe-
cies. The successful settlement and recruitment of
Tubastraea reflects the high propagule pressure asso-
ciated with its high reproductive output, such as high
oocyte production and early reproduction age (de
Paula et al. 2014). This is likely to be one of the rea-
sons that Tubastraea has successfully expanded its
range along the Brazilian coast (Creed & de Paula
2007, Riul et al. 2013, Creed et al. 2017). Additionally,
the invasive coral’s successful settlement could also
be the result of asexually produced larvae (Ayre &
Resing 1986, Capel et al. 2017). Overall, we show the
potential for Tubastraea to change native coral popu-
lation dynamics, and affirm previous suggestions of
the impacts on ecological processes, such as recruit-
ment of native species (Miranda et al. 2016, 2018).

The number of native recruits on experimental
plates was low and negatively related to the adult
cover of Tubastraea. Efficient competitive strategies

of invasive corals could be increasing
the mortality of recently settled native
coral larvae. Following settlement on
the substrate, juvenile Tubastraea
can elongate their thin tissues, which
increases colony survival when facing
competition from other coral species
(Vermeij 2005). Tubastraea adults
also use elongated polyps and allelo-
chemical products to impact competi-
tors, as well as asexual reproductive
strategies such as polyp bailout to
survive and establish on the substrate
(Creed 2006, dos Santos et al. 2013,
Capel et al. 2014, Hennessey & Sam-
marco 2014, Sammarco et al. 2015,
Miranda et al. 2016). Once colonies of
Tubastraea are established, they
spread out into the surrounding area,
reducing the space available for set-
tlement of native coral species (de
Paula & Creed 2005, Mizrahi et al.
2014b). This was shown in the pres-
ent study, as native corals tended not
to settle in areas with high covers of
adult Tubastraea. This may be a
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Estimate SE z-value Pr (>|z|)

Native coral recruits
Intercept 1.42 0.49 2.85 0.004*
Tubastraea adult cover −0.06 0.02 −2.20 0.027*
Habitat −0.41 0.63 −0.64 0.518
Tubastraea adult cover × Habitat 0.05 0.04 1.15 0.247

Native coral adults
Intercept 2.38 0.11 20.44 0.000*
Tubastraea adult cover −0.06 0.01 −3.87 0.000*
Habitat 0.86 0.15 5.72 0.000*
Tubastraea adult cover × Habitat 0.00 0.01 0.32 0.745

Tubastraea spp. recruits
Intercept 2.50 0.22 11.16 0.000*
Tubastraea adult cover 0.01 0.00 1.58 0.112
Habitat 0.48 0.28 1.67 0.094
Tubastraea adult cover × Habitat −0.04 0.01 −3.24 0.001*

Native coral recruits
Intercept 0.49 0.49 0.99 0.320
Native adult cover −0.00 0.04 0.09 0.926
Habitat 0.05 0.92 0.05 0.955
Native adult cover × Habitat 0.01 0.05 0.34 0.729

Table 2. Zero-inflated negative binomial regression model (count data) ex-
plaining the relationships between native coral recruits and Tubastraea spp.
adults; native coral adults and Tubastraea spp. adults; Tubastraea spp. recruits
and Tubastraea spp. adults; and native coral recruits and native coral adults. 

*p < 0.05
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response to the toxic chemical compounds produced
by Tubastraea, which might be impacting larval set-
tlement (Koh & Sweatman 2000). Additionally, it is
unlikely that the observed reduction in native
recruitment was associated with native adult coral
decline, in this case, since native recruit density
showed no relationship with the native adult cover.

We have demonstrated that native adult coral
cover was negatively related to Tubastraea adult
coral cover. It is possible that these results are associ-
ated with sampling artefacts, considering the small
scale of our study (see Fridley et al. 2004). On the
other hand, these results also can be explained by the
competitive dominance of invasive corals over the
native species (dos Santos et al. 2013, Miranda et al.
2016). Endemic species, such as Siderastraea stellata

and Mussismilia hispida, experience a significantly
greater percentage of mortality when opposed to
Tubastraea tagusensis and T. coccinea in competitive
encounters (dos Santos et al. 2013, Miranda et al.
2016). By reducing the vitality of native adult corals
through competition, Tubastraea could also impact
the production of native coral larvae released during
reproductive peaks. In the short term this could
impact recruitment success of native coral, but over
time this might drive reproductive failure of popula-
tions (Levitan & Petersen 1995).

The adult cover of Tubastraea was relatively high
in companion to all native species, especially on the
reef wall. The relative success of this azooxanthellate
invader on the reef walls could be due to the environ-
mental conditions in this habitat, such as lower light
intensity and more available space because of the
lower cover of native zooxanthellate competitors,
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Fig. 2. Relationship between (a) native coral recruits (den-
sity) and Tubastraea spp. adult cover (no. of points) and (b)
native coral adult cover (no. of points) and Tubastraea spp.
adult cover (no. of points). Black circles represent experi-
mental units on reef wall, and grey circles represent units on
reef top. Black line represents curve of zero-inflated nega-
tive binomial regression model. Red dashed lines represent 

95% confidence interval of the model
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Fig. 3. Relationship between (a) Tubastraea spp. recruit den-
sity and adult cover and (b) native recruit density and native
adult cover. Black circles represent experimental units on 

reef wall, and grey circles represent units on reef top
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which are found more often on the well-lit reef tops.
According to the niche theory, one species can domi-
nate a community, leading to either resource parti-
tioning between the species or elimination of the
weaker competitor from the habitat (Colwell &
Fuentes 1975, Diamond 1978). As such, common
interpretations of this theory suggest that successful
invasion requires the invader to occupy different
niche space than most of the resident species or to
just outcompete them (Fargione et al. 2003, Mac-
Dougall et al. 2009), which appears to be the case for
Tubastraea on Brazilian reefs.

Overall, there was no significant relationship be -
tween the invasive recruits and adult cover. This is
possibly due to the intense competitive conditions
around adult colonies, which could increase juvenile
mortality. These competitive conditions could lead
Tubastraea to produce more larvae with the capacity
to travel longer distances than larvae able to settle
rapidly near the parental colony (Mizrahi et al. 2014a).
However, the relationship between invasive recruit
density and adult cover had a significant interaction
with habitats. The characteristics of the different
habitats assessed may be important for Tubastraea
recruitment dynamics because there was a positive
relationship between recruit density and cover of
adults on reef walls but not on reef tops. Tu ba straea
larvae usually settle near the adult colonies, favour-
ing self-recruitment and promoting gregarious spa-
tial patterns, especially in habitats with negative and
vertical orientation, such as reef walls (de Paula &
Creed 2005, Glynn et al. 2008).

Given that coral recruitment is important to the
maintenance and recovery of coral populations (Ver-
meij & Sandin 2008, Ritson-Williams et al. 2009, Bau-
man et al. 2015, Doropoulos et al. 2017), the effects of
Tubastraea invasion on native recruits and adult
corals are likely to impact the demography of native
coral populations. Considering that coral reefs in the
southwestern Atlantic are facing multiple local (e.g.
pollution and sedimentation, see Dutra et al. 2006,
Cruz et al. 2015) and global (e.g. ocean warming, see
Leão et al. 2008, Hoegh-Guldberg & Bruno 2010,
Miranda et al. 2013) stressors, the compounding
impacts of the invasive Tubastraea to native coral
recruitment will likely drive an overall change in the
natural values and resilience of these reef ecosys-
tems. Unlike the global challenge of climate change,
it is possible to implement localised strategies (e.g.
wrapping method, single or multiple manual removals,
and low-salinity treatments) (Moreira et al. 2014,
Mantelatto et al. 2015, de Paula et al. 2017) to reduce
the spread and impact of Tubastraea. To be effective,

however, these management interventions should be
evidence based and assessed with robust coral reef
monitoring.

Finally, we show that the invasion success of the
coral Tubastraea can be related to the recruitment
and population dynamics of corals in a southwestern
Atlantic coral reef. Since the first observation of
Tubastraea on the southwestern Atlantic coast over
30 yr ago, these invasive species have successfully
colonised coral and rocky reefs along the Brazilian
coast. These invaders are responsible for increasing
mortality of native corals and altering ecological pro-
cesses (Lages et al. 2011, dos Santos et al. 2013,
Miranda et al. 2016, 2018, Creed et al. 2017). Our
study highlights the importance of considering early
life history processes when assessing the effects of
invasive species on ecological functioning in coral
reef ecosystems.
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