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Agent-based models reveal limits of mark–release–recapture
estimates for the rare butterfly, Bhutanitis thaidina
(Lepidoptera: Papilionidae)
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Abstract Insect diversity and abundance are in drastic decline worldwide, but quantify-
ing insect populations to better conserve them is a difficult task. Mark-release-recapture
(MRR) is widely used as an ecological indicator for insect populations, but the accuracy
of MRR estimates can vary with factors such as spatial scale, sampling effort and mod-
els of inference. We conducted a 3-year MRR study of B. thaidina in Yanzigou valley, Mt.
Gongga but failed to obtain sufficient data for a robust population estimate. This prompted
us to integrate B. thaidina life history information to parameterize agent-based models
and evaluate the conditions under which successful MRR studies could be conducted.
We evaluated: (1) the performance of MRR models under different landscape types, and
(2) the influence of experimental design on the accuracy and variance of MRR-based esti-
mates. Our simulations revealed systematic underestimates of true population parameters
by MRR models when sampling effort was insufficient. In a total of 2772 simulations,
subjective decisions in sampling protocol (e.g., frequency, number of sampling locations,
use of spatially explicit models, type of estimands) accounted for nearly half of the vari-
ation in estimates. We conclude that MRR-based estimates could be improved with the
addition of more field-specific parameters.

Key words agent-based simulation; Aristolochia moupinensis; habitat; hostplant; land-
scape; Mt. Gongga; program MARK; spatially explicit capture–recapture (SECR)

Introduction

Insect diversity and abundance are in drastic decline
worldwide (Hallmann et al., 2017; Sánchez-Bayo &
Wyckhuys, 2019; van Strien et al., 2019), but quantify-
ing insect populations to better conserve them is a dif-
ficult task (Haddad et al., 2008; Didham et al., 2020;
Welti et al., 2021). An accurate quantification of popu-

Correspondence: Zhengyang Wang and Yuanheng Li, De-
partment of Organismic and Evolutionary Biology and Mu-
seum of Comparative Zoology, Harvard University, 26 Ox-
ford Street, Cambridge, MA 02138, USA. Email: zhengyang-
wang@g.harvard.edu; yhli@fas.harvard.edu

*Zhengyang Wang and Yuanheng Li contributed equally to
this work.

lation size is the first step to effective conservation man-
agement (Sutherland, 1996). Field conservationists have
traditionally relied on count-based inferences from traps
or transects as indicators of relative insect abundance
(Gross et al., 2007; Nowicki et al., 2008; Hamm, 2013).
Compared with these methods, mark–release–recapture
(MRR) requires more costly, long-term fieldwork, but
has been widely implemented since Craig (1953) and has
been described as the “gold standard” in estimating insect
populations (Haddad et al., 2008).

Although statistical models of MRR have been well-
studied (Jolly, 1965; Seber, 1965; 1970, 1982, Pollock
et al., 1990; Schwarz & Arnason, 1996), fewer studies
have been carried out to evaluate the accuracy of pop-
ulation estimates using these methods (see Sandercock,
2006; Lindberg, 2012 for review). The accuracy of a
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population estimate is hard to verify since we can seldom
count all the individuals in a population (with rare excep-
tions, see Donkers et al., 2012 on common carp). Valida-
tion of MRR estimates, sometimes feasible in birds, fish,
and insects, has focused primarily on analyzing subsam-
pled data (Ponchon et al., 2018; Turlure et al., 2018) or
comparing MRR with count-based estimation methods
(Evans, 2004; Haddad, 2008; Hain et al., 2016). Many
validation studies have found that the results of MRR-
based estimates vary with factors such as the spatial scale
sampled, the effort in sampling, and the downstream anal-
ysis tool used (Banks & Brown, 1962; Schneider, 2003;
Schtickzelle et al., 2003; Evans, 2004; Rosenberger &
Dunham, 2005; Haddad et al., 2008; Pellet et al., 2012).
For example, Hain et al. (2016) showed that while indi-
vidual mark-recaptures of fish resulted in underestimates
of population sizes compared with visual estimates,
batch MRR data (with higher numbers of recaptures) did
not. On the other hand, Nowicki et al. (2005) showed
that MRR sampling schemes to estimate butterfly pop-
ulation size can be simplified while retaining equally
efficient estimates. These field-based results suggest that
sampling design plays an important role in MRR-based
estimates.

Recently, progress has also been made with a set of
methods involving “spatially explicit capture–recapture”
(SECR) (Efford, 2004; Borchers & Efford, 2008; Efford
& Boulanger, 2019). These methods model the home
range of animals and their density-dependent detection
probabilities. In simulations, SECR has been shown to be
more effective than traditional MRR (Efford & Fewster,
2013), but SECR requires more rigid sampling designs
involving multiple capture points (Kristensen & Kovach,
2018). Although popular in vertebrate mark-recapture re-
search (Ruiz et al., 2013; Jimenez et al., 2019; Green
et al., 2020), it has been less practical to implement
MRR surveys in some insect species, particularly those
with shorter lifespans that are difficult to trap and mark
across multiple encounters. Spatially explicit models of
animal movement also underscore the complexity of ac-
counting for animal dispersal across heterogeneous land-
scapes (Ovaskainen, 2004). Understanding the effect of
heterogeneous or fragmented landscapes on population
inference is particularly important, as many insects have
specific hostplants and microhabitat ranges (Ovaskainen
et al., 2008). Appropriate sampling designs such as
whether to sample within a given habitat (Dupont et al.,
2021) depend upon individual species or populations.

Conservation biologists aiming to estimate insect pop-
ulation size thus need to design a sampling scheme with
sufficient power to estimate abundances, but they often
don’t know their estimand a priori to justify a logis-

tic “sufficiency.” Furthermore, what if the insect species
that requires assessment is rare and hard to capture?
Although MRR is generally recognized as an effective
method to measure butterfly population size (Nowicki
et al., 2008; Haddad et al., 2008; Pellet et al., 2012; Kral
et al., 2018) and has been applied to several endangered,
flagship species in relatively isolated habitats (Ferster &
Vulinec, 2010; Nowicki et al., 2019), these studies in-
volve locally abundant populations. In practice, many en-
dangered insects are rarely encountered in the wild and
are thus understudied. Lack of sufficient capture (or re-
capture) may preclude accurate population estimates for
endangered insects.

Agent-based models—models that specify individual
behaviors and interactions across a predefined landscape
(Myers, 1976; DeAngelis, 1992; DeAngelis & Mooij,
2005; DeAngelis & Grimm, 2014)—can help address
some of these complexities. These models have been in-
creasingly used to analyze large-scale, spatially explicit,
individual-process-based biological problems, from epi-
demiology to insect social structure to human coopera-
tion (Lewis et al., 2014; Eckhoff et al., 2016; Crall et al.,
2019). In a conservation management context, agent-
based models have been used to model hostplant con-
ditions of endangered insects (Griebeler & Seitz, 2002)
and count-based estimates of arthropod population size
(Petrovskii et al., 2012, Ahmed & Petrovskii, 2019), but
have not been applied to validate MRR-based estimates.

In this study, we wanted to estimate the abundance
of the near-threatened swallowtail butterfly, Bhutanitis
thaidina (family Papilionidae, IUCN Red List, Li 2019).
The species is endemic to the mountain ranges of south-
western China (Yi et al., 2011, Gao et al., 2014, Igarashi
& Harada, 2015) and is listed as a “Class II protected
species.” Its populations are under severe threat of cli-
mate change-induced habitat loss (Hu et al., 2019). We
performed mark-recaptured on a population of B. thaid-
ina inside Yanzigou valley, Mt. Gongga, China. Previous
telemetry work on a population of golden birdwing but-
terflies Troides aeacus (family Papilionidae) in the same
valley showed that individual butterflies disperse along
the valley but not across the high-elevation mountains
that flank it (Wang et al., 2019), suggesting that simi-
larly large butterflies may remain in relatively restricted
habitats where their population parameters are likely to
be consistent with MRR model assumptions. A survey of
B. thaidina populations represents a technical challenge
due to the rarity of the butterfly and the inaccessibility of
its mountainous terrain.

We first investigated whether a 3-year MRR study of
B. thaidina within the constraints of our field budget
(a total of 141 person-days) was enough to obtain
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Fig. 1 Schematic for using agent-based models to evaluate MRR-based estimates. (A–B) Agent-based models are parameterized with
field-based measurements of the life-history and movement parameters of B. thaidina and its hostplant (green) and habitat (blue) range.
(C) Simulations of MRR sampling strategies (different frequencies and survey spots) on different landscape types. (D) Simulated MRR
results are analyzed with a standard pipeline, either in program MARK or spatially explicit SECR. (E) Model estimates are compared
with parameters in agent-based models to evaluate the accuracy and variance of different models under different experimental designs.

sufficient data for a robust population estimate. Our un-
satisfactory results underscored the intrinsic difficulties
in assessing elusive mountainous butterfly populations,
and prompted us to integrate B. thaidina life history to
parameterize agent-based models and evaluate the condi-
tions under which successful MRR studies could be car-
ried out. Specifically we asked: (1) Do estimates from
MRR models perform differently under different land-
scape types (e.g., would MRR conducted in a closed
habitat such as a lake produce more accurate estimates
than MRR conducted in a heterogeneous habitat, such as
that of an elevationally restricted insect)? (2) How much
do differences in field sampling design affect the accu-
racy and variance of MRR-based estimates (e.g., what are
the consequences of increasing MRR sampling frequency
vs. increasing MRR sampling locations, using traditional
MRR-based models vs. spatially explicit models, and
estimating population number vs. estimating population
protandry and individual lifespan)? Our results regarding
the efficiency of MRR-based estimates are widely appli-
cable to all MRR-based studies, especially ones that are
similar in range, spatial scale and movement parameters
(e.g., many arthropods and small vertebrates). Lastly, we
returned to our field-collected MRR data and tried to im-
prove our estimates of B. thaidina populations based on
general patterns of bias learned from agent-based MRR
simulations.

Materials and methods

See Figs. 1 and S1 for visual summaries of our workflow.

Study area

Mark-recapture studies were conducted inside
Yanzigou glacier valley, Mt. Gongga. The region is topo-
logically characteristic of the “region of extreme relief”
(Irving & Hebda, 1993) of the Hengduan mountains—a
deep valley flanked by high mountains, providing a
restricted environment for butterflies. Vegetation along
the valley ranges from alpine grassland (3800 m a.s.l.),
Rhododendron forest (3200 m a.s.l.), temperate forest
(2000–3000 m a.s.l.) to crop fields (1900 m a.s.l.) of a
local village. A population of Bhutanitis thaidina was
discovered in Yanzigou valley in 1985 (Igarashi, 2003).
The larvae feed on Aristolochia moupinensis, which can
be found on edges of disturbed temperate forests inside
Yanzigou valley. Another threatened, congeneric species,
Bhutanitis mansfieldi occurs within the valley in early
April (before B. thaidina), and its larvae feed on the
same hostplant (see Zhang et al., 2019 for life-history
comparisons of Bhutanitis species). Two other species,
Troides aeacus and Byasa sp., also feed as larvae on
Aristolochia, and their adults emerge in June and July
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(after B. thaidina); they are strong flyers and can be seen
at elevations lower than those of habitats suitable for
Aristolochia moupinensis hostplants.

Mark-recapture

Mark-recapture of B. thaidina was carried out on non-
rainy days from May 20 to June 10 in three consecutive
years, 2016–2018. Mark-recaptures were performed in a
single 30 m × 30 m habitat (2230 m a.s.l.) where veg-
etation had previously been cleared to build a cow shel-
ter that was abandoned three decades ago. While adults
of B. thaidina can be observed flying across the temper-
ate forest canopy in this region, they can only be effec-
tively marked and recaptured in this relatively open patch.
Each MRR session lasted from 08:00 to 17:30, with two
people taking notes and one person catching. Individuals
of B. thaidina were caught with 5 m long entomological
nets, marked on the underside of the left hindwing with a
unique number using a waterproof pen, and released. We
noted the time at which each individual was captured and
its sex and wing condition upon capture (designated as
“perfect,” “slightly damaged,” “damaged,” and “severely
damaged”). Temperature and humidity were measured
every 30 min. We counted all B. thaidina individuals fly-
ing across the field (but missed by the catcher) and noted
their behavioral state in each case. The behaviors were
classified as “hill-topping” (traversal of the observation
spot from low to high elevation, including male-male
fighting), “flying” (non-“hill-topping” traversal), “mat-
ing,” “nectaring,” and “resting.” When an individual was
observed to fly through the habitat, we measured the time
needed to cross the habitat (30 m in width) to estimate the
speed of B. thaidina movement.

Hostplant and habitat transects

Local stakeholders informed us that the habitat range
for B. thaidina (i.e., the elevational range within which
butterflies can be observed in Yanzigou valley) was be-
tween 2000 and 2400 m a.s.l. and that their hostplant
range (the elevational range within which Aristolochia
moupinensis can be found) was between 2200 and 2400
m a.s.l. To verify these accounts, in June 2017, we sur-
veyed 10 transects within the hostplant range (2200–2400
m a.s.l.), and 8 transects within the habitat range but out-
side the hostplant range (2000–2200 m a.s.l.). Each tran-
sect was 200 m long and 5 m wide traversing 30 m dif-
ference in elevation. All hostplants within the transects
were recorded. We also attempted to look for B. thaidina
during these transect surveys. Since Aristolochia host-

plants are more likely to occur in disturbed forests, we
also surveyed Aristolochia moupinensis along the 15 km
road connecting Yanzigou glacier (3800 m a.s.l.) to the
village (1900 m a.s.l.).

Agent-based model

Based on our field measurements, we developed an
agent-decision-based, discrete-time model to simulate the
MRR sampling procedure of B. thaidina in Yanzigou val-
ley (Table S1). The model grid consisted of 221 × 140
cells, each associated with an elevational value projected
from the map of Yanzigou valley (27.846 km2). Each cell
represented a 30 m × 30 m survey spot. The model reso-
lution was set at 15 s per time step.

Individual movement: Each individual in the model
was characterized by sex (female/male), date of emer-
gence (normal distribution within the first 30 days, SD =
4.5) and life span (normal distribution from 14 to 35 days,
SD = 3.2). Individuals only emerged in cells located in
elevations within the “hostplant range.” The boundaries
of the grid could be either open or closed. In the open-
grid setting, any individual could disperse out of the grid
freely: if the individual was outside the grid continuously
for one hour (240 timesteps), it was removed from the
model (treated as dead). In other words, individuals ex-
ited the model either at death, or after dispersal outside
the grid. At each timestep, the probability of each individ-
ual moving to a different cell was determined by a “flight-
rest ratio” parameter that changed according to the time
of the day. The parameter reflects the change in a butter-
fly’s activity level during the day. An individual is more
likely to move into a cell within the “habitat range” than
into a cell not suitable as habitat. The likelihood differ-
ence is determined by a “habitat attraction” parameter,
which simulates a butterfly’s edge-mediated dispersal out
of the habitat (Schultz & Crone, 2001). If the adjacent cell
types are the same, then the movement choice is random.

Population: The total number of individuals to emerge
in the model is set by the “population” parameter. The
male and female ratio is decided by the “sex ratio” param-
eter. When the “protandry” parameter is set above zero,
male individuals emerge earlier than females. Both male
and female emergences still follow a Gaussian distribu-
tion, but the mean emergence time of females is delayed.

In silico sampling: Any number of cells in the grid
can be designated as sampling cells. In each sampling
cell, the frequency of sampling per week can be adjusted
by the “sampling effort” parameter. When a cell is be-
ing sampled, information about the portion of individuals
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Fig. 2 Program MARK estimation of in silico MRR data of sampling a single spot once per week for 2 months, on six different land-
scape types performs best on closed-boundary landscapes and habitat-delineated landscapes. The left panel shows the linear regression
of estimation results on different landscape types as population parameter of the agent-based model increases. Under the tested popu-
lation parameters, all estimates are underestimates (below the dotted red line). The expanded panels on the right indicate change in the
accuracy of predictions (measured as estimation divided by the population parameter for each population parameter) for each landscape
type: (A) a “flat” landscape with closed boundaries; (B) an open landscape with hostplant range and habitat range delineated by empir-
ical data; (C) an open landscape with only habitat range delineated by empirical data; (D) and open landscape with only hostplant range
delineated by empirical data; (E) an open landscape with homogenized strips of habitat and nonhabitat; (F) an open landscape with
hostplant range and habitat range delineated by empirical data but sampling cell set outside the habitat range. Dotted redlines indicate a
0.3 accuracy threshold. Both bounded landscape and open landscape with habitat and hostplant delineation show significant increases
in estimation accuracy as population sizes increase.

(determined by the “capture rate” parameter) that move
into the sampling cell is logged (“captured”).

Agent-based simulations

We first tested how sensitive MRR estimates are to
variations in parameters that are intrinsic to the life-
history of B. thaidina (see Supplementary Material).

Then, to compare the accuracy of MRR-based popula-
tion estimates with the true population parameters un-
der different landscape assumptions, we simulated single-
location, 2-month-long, once-per-week MRR studies
with five population size parameters (102, 102.5, 103,
103.5, 104), under six different landscape types (Fig. 2).
In the first five landscape settings, the sampling cell is
inside the hostplant range: (1) a “flat” landscape with
closed boundaries; (2) an open landscape with hostplant
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range and habitat range delineated by empirical data; (3)
an open landscape with only habitat range delineated em-
pirically; (4) an open landscape with only hostplant range
delineated empirically; (5) an open landscape with ho-
mogenized strips of habitat and nonhabitat. We also tested
(6) an open landscape with hostplant range and habitat
range delineated by empirical data, but sampling cells set
outside the habitat range. Each simulation was repeated
10 times.

To study the accuracy and variance of mark-recapture
estimates under limited conservation resources, we used
the grid representing an open landscape with or without
hostplant range and habitat range delineated by empiri-
cal data (i.e., second and third landscape type in the pre-
vious simulations) and simulated three sets of exponen-
tially increasing populations (3 × 102, 3 × 103, 3 × 104).
We studied two strategies of allocating conservation re-
sources: (1) under an “increased sampling spot” strategy,
we increased the number of sampling cells from one to
seven but kept sampling effort constant at once per week
and (2) under an “increased sampling effort” strategy, we
increased the sampling frequency from once per week to
seven times per week, but kept the number of sampling
cells constant at only one per week. Each simulation ran
for the time step equivalent of 2 months with 10 repeats.
To study the accuracy and variance of temporal estimates
based on MRR results, we repeated the above simulations
but increased protandry from 0 to 15 days.

Analysis

Simulated mark-recapture results under various land-
scapes and sampling schemes were formatted into “en-
counter history” tables (same-day recaptures were dis-
carded) and fitted with a POPAN model, as implemented
in program MARK (Cooch & White, 2006), which is a ro-
bust parameterization of the Jolly–Seber model (Schwarz
& Arnason, 1996). Models that provide estimates for
population size (N) had their apparent survival (ϕ) and
capture probabilities (p) set as constant over time, con-
sistent with how individuals in agent-based models are
parametrized. We estimated lifespan as (1/−ln[ϕ]), ad-
justed by unit time between each sampling event. When
estimating protandry, the population sizes of simulated
male and female individuals were analyzed separately.
Protandry is calculated as the difference between the time
at which the probability of entry into the population (pent
parameter in POPAN model) peaks in male and female
groups.

Empirical mark-recapture results from 2016 to 2018
were analyzed with a POPAN model without fixing ϕ

and p across encounter intervals; estimates for popula-
tion size (Nˆ) were selected from the model with the low-
est Akaike Information Criterion adjusted for small sam-
ple size (Hurvich & Tsai, 1989). Individual lifespan and
population protandry estimates were not included in the
analysis for empirical data due to inconsistent temporal
sampling.

Simulations with more than two sampling cells were
fitted with a spatially explicit capture–recapture model
(SECR, as implemented in the “secr” package in R [Ef-
ford, 2019]) to estimate population density per hectare.
Each sampling cell was modeled as a “multicatch” trap
with “half normal” detection function and 4σ buffer
width. Density estimates in the model were scaled to our
simulated grid size to obtain a population estimate.

Each estimation from simulated mark-recapture results
under the different parameters by the POPAN and SECR
models were evaluated for both their accuracy and vari-
ance: (1) for each of the 10 simulations under the same
set of parameters, we analyzed the deviation of the aver-
age estimated value from the true parameter (“normalized
error”) and (2) the variation of these deviations (“normal-
ized variance”). To look at parameters that have the great-
est effect on estimation accuracies and variations, we con-
ducted multivariate multiple regression analysis (R core
team, 2019) on all sets of parameters (e.g., population,
landscape types, sampling strategies), estimation meth-
ods (i.e., POPAN vs. SECR model) and estimands (i.e.,
population, protandry, and lifespan).

Adjusting field estimates

To adjust for underestimates of B. thaidina population
based on field-collected MRR data, we simulated sam-
pling schedules from 2016 to 2018 (Table S2) in silico
under different population parameters. The resulting sim-
ulated MRR data were used to generate new estimates
using the program MARK (see previous section). The
prior population parameters that generated population es-
timates closest to field-based estimates of the year were
selected as the “adjusted estimation.”

Results

Field measurements

A total of 56 Aristolochia moupinensis hostplants were
discovered along 10 transects (mean = 5.4, SD = 5.81)
between 2200 and 2400 m a.s.l., while no hostplants
were seen at low elevation transects from 2000 to 2200
m a.s.l. No B. thaidina were seen during a count-based
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Fig. 3 Field measurements used to parametrize agent-based models. (A) Distribution of 105 Aristolochia moupinensis hostplants
found in transect and road-side surveys, from 1900 to 3800 m a.s.l. Hostplant range is restricted between 2200 and 2500 m a.s.l. (B)
The time of the day of 460 capture events as a proxy for the activity level of B. thaidina during the day. Blue and red dotted lines
indicate the Loess-smoothed activity peak for males and females. (C) The date of the 460 capture events as a proxy for emergence time
of B. thaidina. Blue and red dotted lines indicate the Loess-smoothed emergence peak for males and females. (D) Deterioration of wing
condition across time between first-captured B. thaidina and recaptured B. thaidina individuals. (E) Observed behavior of captured B.
thaidina individuals (recorded upon capture) and free-flying B. thaidina individuals.

transect survey. Another 49 hostplants were discovered
between 2282 and 2505 m a.s.l. along the road connect-
ing Yanzigou glacier (3800 m a.s.l.) to the village (1900
m a.s.l.) (Fig. 3A). Despite the absence of hostplants,
both researchers and local stakeholders have observed
B. thaidina at elevations as low as 2000 m a.s.l., but no
higher than 2400 m a.s.l.

We estimated B. thaidina flight speed to be 1.86 m/s
(n = 5, SD = 0.429). The fieldwork time devoted to B.
thaidina mark-recapture each year spanned from 12 to
19 days, with weather-permitted sampling days ranging
from 4 to 13 days, nonuniformly distributed throughout
the sampling period (Table S2). During mark-recapture
experiments, all B. thaidina were caught between 08:55 to
15:58, but were most abundant between 12:00 and 14:00

(Fig. 3B). Individuals of B. thaidina could be confidently
identified as far as 15 m from the observer. When an in-
dividual was detected, it was captured 32% of the time
in 2017 and 28% of the time in 2018 (relevant data were
not recorded in 2016). On average, 117.33 (SD = 49.94)
individuals were captured each year and the recapture
rate was 6.76% (SD = 2.27). Among a total of 460 cap-
ture events, more than 83% of the butterflies were caught
while hill-topping, although we also observed mating,
resting, and nectaring behavior in B. thaidina (Fig. 3E).
We observed no significant differences in the behavior
of captured and uncaptured butterflies (modeled as vari-
able in multiple regression: t value = 1.43, P = 0.23).
The mean female-male sex ratio observed in the field
was 0.17 (SD = 0.10). Across 3 years, capture of both
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sexes peaked between May 29 and May 30, with no de-
tectable evidence of protandry, here defined as time dif-
ference in the observed population peak (Fig. 3C). We did
not observe significant deterioration in wing condition
over time for either sex (four factor levels, Estimatemale

= −0.01, Estimatefemale = −0.04, adjusted-R2 < 0.01
for both regressions, Pmale = 0.25, Pfemale = 0.10), nor
could we find significant wing deterioration when con-
sidering only recaptured individuals (Estimate = −0.03,
adjusted-R2 = 0.018, F145 = 3.711, P = 0.06), suggesting
no strong effects of handling during the mark-recapture
procedure (Fig. 3D). In 2017 and 2018, 73% of the 52
captured females were mated (sphragis present), but lo-
gistic regression showed no significant effect of capture
date (Estimate = 0.04, P = 0.65) or wing condition (Es-
timate = −17.29, P = 0.99) in predicting mating status
(relevant data were not recorded in 2016).

Field MARK estimates

POPAN estimation of individual apparent survival rates
fluctuated from unrealistically low in 2016 to 100% in
2018 (Table 2). These fluctuations indicated that our
POPAN analysis failed to estimate the parameters and the
estimated populations each year are in error (Cooch &
White, 2006).

Model parameterization

Parameter settings for our agent-based models were
based on field estimates and inferences made from avail-
able literature (Table S1). See Supplementary Material
for justification of each parameter setting. The accuracy
of MRR estimates are sensitive to the particular param-
eters (e.g., flight speed, habitat attraction) we assigned
in our model to represent the movement of B. thaidina
(Fig. S3).

Analysis on simulated data

Under all six landscape settings, population estimates
of single-location, once-per-week MRR simulation in-
creased significantly with population size (Table S3).
Linear regression of population estimates under different
population sizes in both closed boundary landscapes
(Fig. 2A) and open landscapes with empirically de-
lineated hostplant and habitat ranges (Fig. 2B) have
R2 above 0.5. The accuracy of these estimates (here
measured as the proportion of deviation from observed
parameters) only increased significantly with increas-

ing population sizes when the boundary was either
completely closed (Fig. 2A), or when the boundary
was open but the habitat was empirically delineated
(Fig. 2B,C).Under single-spot, low-effort sampling, most
estimates were below 30% of the simulated population
parameter.

Estimation accuracy and variance under different pa-
rameter settings are visualized in Figures 4–6, and sum-
marized in Table 1. The model that best explains the ab-
solute deviation from observed parameters for all 2772
simulations had to account for the evaluation model
(POPAN or SECR), estimand type (population, lifespan,
or protandry), landscape type (with or without habitat de-
lineation), population (30–30 000), sampling effort (once
or seven times per week), and number of spots (adjusted-
R2 = 0.19, F275 = 11.93, P < 0.01), with the first five
variables having significant estimates. The model that
best explained the deviation (both negative and positive)
from the tested parameters has a better fit than that ex-
plaining absolute deviation (adjusted-R2 = 0.52, F275 =
50.77, P < 0.01). Among the variables with significant
estimates, the relative importance of each is as follows:
estimand type > evaluation model > landscape type >

population > effort. The model that best explains vari-
ances in estimates has to account for evaluation model,
estimand type, and population (adjusted-R2 = 0.096, F277

= 8.481, P < 0.01). Among estimates with temporal esti-
mands (protandry and lifespan), the best model suggests a
significant interaction between population and sampling
effort (P = 0.01).

Estimation adjustment

We simulated the mark-recapture schemes from 2016
to 2018 (Table S2) with population sizes from 10 to 10
800. POPAN estimates for in silico MRR data showed
a significant linear increase with the population size pa-
rameter (adjusted-R2 >0.88 in all three regressions). In
each of the linear regressions, the adjusted populations
required to achieve the original estimates from 2016 to
2018 are higher than their prior estimates (Table 2, right
side; Fig. S2).

Discussion

Difficulty of B. thaidina MRR

Despite our best effort (a total of 141 person-days, 352
marked samples), we did not obtain sufficient data to fit
the POPAN model of MRR and failed to provide a ro-
bust population estimate. Our low recapture rate (6.76%)
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Fig. 4 Accuracy and variance of MRR-based population estimates, comparing an “increased sampling spot” strategy with an “in-
creased sampling frequency” strategy. (A) Estimation results after increasing sampling frequency up to 7 times per week. (B) Estimation
results after increasing to as many as seven sampling spots within the hostplant range. (C) Same sampling scheme with (B) but data
were analyzed with a spatially explicit model. (D)–(F) Same experimental design as (A)–(C), but simulation carried out in a landscape
with no habitat delineation.

© 2021 Institute of Zoology, Chinese Academy of Sciences, 0, 1–17
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Fig. 5 Accuracy and variance of MRR-based temporal estimates comparing the “increased sampling spot” and the “increased sampling
frequency” strategies. (A)–(B) Estimating protandry with an “increased sampling frequency” strategy and an “increased sampling
spot” strategy. (C)–(D) Estimating individual lifespan with an “increased sampling frequency” strategy and an “increased sampling
spot” strategy. (E)–(H) Same experimental design and estimands as (A)–(D), but simulation carried out in a landscape with no habitat
delineation.
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Fig. 6 Accuracy and variance of in silico MRR-based estimates under 278 model parameter-downstream analysis parameter combi-
nations, each with 10 simulations. Each dot represents the average of 10 simulations using the same set of parameters. In each figure,
the same simulation results were classified by their (A) sampling effort, (B) number of observers, (C) simulated population size, (D)
type of evaluation, (E) type of estimand, and (F) map type. Dots in the bottom left of each figure represent high variance, low accuracy
estimates, while simulation results that are low variance, high accuracy should in theory be in the top right of each figure (but none
exist).

reflected the intrinsic difficulty in sampling B. thaidina
in the field. We were limited to staying at a single patch
of cleared forest where capture was possible—a small
part of the vast available habitat of this population of B.
thaidina. Our logistics did not allow us to deploy multi-
ple teams across the mountainous terrain to perform mul-
tipoint MRR. While the natural history of Bhutanitis is
relatively well-known, population estimates of rare in-
sect species with less well-defined habitats requires much
higher sampling effort. In our case we turned to agent-
based simulations for insights.

Agent-based models and natural history

Previously, agent-based models have been used to eval-
uate count-based population estimates for conservation
(Petrovskii et al., 2012; Ahmed & Petrovskii, 2019). In

this study, we simulated MRR results based on as many
as 30 000 realistically parameterized individuals, inter-
acting at 15 s timesteps for a duration of 2 months. There
are two advantages of using agent-based simulations to
evaluate well-established theoretical models: (1) simula-
tions starting with estimands as set parameters allow for
quantitative evaluation of estimation errors (and in the
case of repeated simulations, a quantitative evaluation of
variance). This is especially useful when dealing with in-
sect population estimates, where the true population size
in the field is logistically difficult to know. (2) By cus-
tomizing and adjusting a wide range of parameters in the
agent-based models, it is possible to analyze which vari-
ables are important sources of variation in MRR-based
estimates. While several key factors, from sampling de-
sign to analytical models have been associated with vari-
ation in MRR-based estimates (Banks & Brown, 1962;
Schneider, 2003; Schtickzelle et al., 2003; Evans, 2004;
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Table 1 Multivariate linear regression of the accuracy and variance of estimates under 278 agent-based model parameters-downstream
analysis parameter combinations.

Absolute accuracy Normalized variance

Estimate ± SE t Value Pr(>|t|)
Relative

importance Estimate ± SE t Value Pr(>|t|)
Relative

importance

Evaluation
model

−0.281 ± 0.087 −3.253 <0.01 0.052 1.907 ± 0.596 3.200 <0.01 0.033

Estimand type −0.143 ± 0.056 −2.555 <0.01 0.039 −0.719 ± 0.385 −1.868 0.063 0.006
Landscape

type
0.011 ± 0.049 0.215 0.830 0.000 0.330 ± 0.340 0.970 0.333 0.003

Population 7.706e-06 ± 1.833e-06 4.204 <0.01 0.050 −4.124e-05 ± 1.262e-05 −3.267 <0.01 0.035
Effort 0.063 ± 0.015 4.243 <0.01 0.048 −0.110 ± 0.103 −1.074 0.284 0.008
Spot 0.047 ± 0.014 3.280 <0.01 0.014 0.006 ± 0.098 0.056 0.955 0.004

Table 2 Program MARK estimation of B. thaidina population in Yanzigou valley and adjusted estimation based on agent-based model
simulations. On the left, fluctuations in Phi (survival rates) across the years between extreme high and low values indicate that our
POPAN analysis failed to estimate the parameters and the estimated populations each year are in error.

MARK estimation Estimate adjustment

Year Phi ± SE P ± SE N ± SE
Linear fit

coefficient
Linear fit

coefficient SD
Adjusted

R2

Adjusted
N

2016 0.22 ± 0.140 0.31 ± 0.25 187.73 ± 139.13 0.11 0.005 0.88 1825
2017 1.00 ± 0.000 0.04 ± 0.01 845.38 ± 206.40 0.31 0.007 0.97 2784
2018 0.95 ± 0.015 0.01 ± 0.00 1082.00 ± 351.55 0.47 0.007 0.99 2329

Rosenberger & Dunham, 2005; Haddad et al., 2008; Pel-
let et al., 2012), it is either infeasible or impossible to
repeat experimental conditions in the field for many sys-
tems (e.g., controlling for mark-recapture regime and in-
dividual behavior but varying the landscape pattern), but
easy to implement in agent-based models.

This is not to say that agent-based models eliminate
the need for fieldwork components of MRR-based es-
timates. Rather, our study provides incentives for field
conservationists to collect information about life-history
parameters such as emergence peak, hostplant distribu-
tion, and behavioral data—in our simulations, accurate
parameters provide accurate estimates. In fact, one of the
most inaccurate estimates in our simulations came from
a scenario in which the in silico surveyor had chosen
to sample outside the habitat (Fig. 2F)—a costly mis-
take to make for a conservation biologist without suffi-
cient knowledge of a species’ habitat. Although we have
selected input parameters from both our own empirical
study and from published life-history analysis (Table S1),
we found that even for a recently IUCN-assessed species
such as B. thaidina, data for many important parame-

ters are lacking. One parameter that is particularly dif-
ficult to estimate is the likelihood that individuals will
disperse out of their preferred habitat (as measured and
modeled by Schultz & Crone, 2001); this is an important
parameter to adjust for each population if we were to as-
sess the accuracy of existing MRR estimations, since in-
creasing its value in simulations results in better approx-
imation of true population parameters (Fig. S3C). Sim-
ilarly, in our study, simulated MRR on individuals with
lower flight speeds approximates true population param-
eters (Fig. S3A), probably because these individuals are
less likely to disperse out of the grid. It is important, when
applying agent-based models to other organisms, to col-
lect accurate natural history information relevant to the
species or population concerned.

Other parameters that could be empirically measured
but have not yet been incorporated into our model in-
clude the activity state of each individual (e.g., active
or inactive state; see Crall et al., 2019) and the decay in
wing condition of each individual. Our model also did not
take into account any climatic information (see Hu et al.,
2019). We included equal sex ratio and equal lifespan for
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both sexes as biological parameters in our models (fol-
lowing Zhang et al., 2019’s data on primary sex ratio of
a captive breed of a closely related Bhutanitis species).
The male biased effective sex ratio measured in field
observations suggests the effects of both protandry and
differential survivorship of butterflies (Calabrese, 2012;
Sielezniew et al., 2020). We did not differentially pa-
rameterize male and female behavior in our models as
this could result in sex-based differences in detectability
(Pickett et al., 2012; Ehl et al., 2019).

Systematic MRR underestimations

Estimates for simulated MRR data revealed systematic
underestimation of the true population parameters, re-
gardless of landscape types, when sampling effort is “in-
sufficient” (Fig. 2). Our study provided a quantitative de-
scription of underestimation: when we only sample once
per week at a single spot for the entire span of a popula-
tion’s emergence—this doesn’t immediately strike us as
an “insufficient” sampling scheme—program MARK’s
population estimate is less than 5% of the true parame-
ter. For a few landscape types, the accuracy of estimation
increases with population size (as higher in silico popu-
lation sizes result in larger recapture datasets), but even
under these scenarios, the estimate under such a sam-
pling effort was no more than 50% of the true parame-
ter (10 000 individuals). Under more realistic landscape
types (open boundary landscapes with habitat and host-
plant delineation), our best estimate when sampling once
per week is less than 30% of the true population.

MRR at different landscapes

Our simulations show that landscape types and bound-
ary types both have significant effects on the accu-
racy of MRR-based estimates (Fig. 2; Table S3). But-
terflies disperse differently in different landscapes (Jain
et al., 2020); landscape heterogeneity and habitat size
are known to cause bias in insect population estimates
in the field (Alexander et al., 2005; Turlure et al., 2010),
but MRR models do not explicitly account for landscape
type and boundary effects. Although Kendall (1999) has
shown that MRR models should provide unbiased popu-
lation estimation even in open habitats, this idea has not
been tested in simulations. Our simulations show that es-
timates under a closed landscape more accurately approx-
imate the true population parameters than estimates under
landscapes with open boundaries. Within all landscape
types with open boundaries, the most realistically pa-
rameterized landscape (hostplant and habitat delineation,

with sampling spot inside the habitat; Fig. 2B) outper-
forms landscape types without habitat specifications or
when the simulated sampling spot is outside the habitat
range. This model achieved nearly 20% of the true pa-
rameter when the population was sufficiently large, de-
spite “insufficient” sampling. This suggests that although
MRR models are inherently designed with closed bound-
aries and lack proper habitat consideration, they may op-
erate satisfactorily in heterogeneous habitats. The differ-
ence in estimation accuracy using data obtained from a
realistically parameterized landscape versus a homoge-
nized landscape is persistent despite the increase in sam-
pling effort (Figs. 4 and 5, comparing plots on the top
with plots on the bottom), but not statistically significant.

Effect of research design on population estimates

When simulations were performed on a fixed land-
scape type, many other factors in our research design
could influence MRR estimates. A common question re-
garding research design can be formulated as follows:
given resources sufficient to support, for example, seven
person-days per week, should we allocate one person to
sample seven days per week, or conduct once-per week
sampling at seven spots in order to obtain the most ac-
curate population estimate? Our results show that subjec-
tive decisions in research designs (such as sampling fre-
quency, number of sampling spots, the choice of whether
to use spatially explicit models, whether the estimands
are population sizes or individual lifespans) account for
nearly half of the variation in a total of 2772 simulations
(adjusted-R2 = 0.46, F277 = 60.09, P < 0.01).

As a rule of thumb, we obtain more accurate, less
variable estimates when estimating more abundant pop-
ulations (or rather, when we obtain more recaptures),
and our estimation improves as we increase both our
sampling frequency and the number of sampling spots.
Specifically, (1) given limited resources for population
estimates, it is better to conduct more frequent surveys
at a single point than it is to sample multiple points less
frequently (although we note that this result is under the
parameters fit for our specific B. thaidina population,
and should be reevaluated in terms of habitat requirement
and individual movement parameters of the specific pop-
ulations or species involved); (2) when we designed our
simulated experiments to obtain multipoint recaptures,
spatially explicit mark-recapture models indeed provided
more accurate and less variable population estimates
than MRR models without explicit spatial models; and
(3) when estimands are temporal (i.e., individual lifespan
or length of protandry), we observed scenarios when
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more accurate estimates are achieved through low-
frequency sampling. Increasing sampling frequency will
result in over-estimation of species lifespan. Note that
although we simulated individual life span with normal
distribution and fitted them with a “wrong” model in
POPAN (constant survival model), accurate temporal
estimation is still possible with increased sampling effort.

Even within the limited parameter-space, we explored
in this study (no more than seven sampling locations,
sampling at most seven days per week), most of this
parameter-space yielded high error, high variance esti-
mates (denoted by the light color palette in Figs. 4 and 5)
that conservation biologists should ideally avoid in de-
signing field sampling schemes. Even though we used
parameters specific to B. thaidina, we expect these “pit-
falls” to remain in the parameter-space, at least for other
insects or invertebrates operating on similar movement
scales. This suggests a potential explanation as to why
MRR-based insect population estimates in field-based
comparative studies tend to report underestimates of pop-
ulation sizes compared with other estimation methods
such as absolute counts.

Adjusting field estimates

We learnt from agent-based simulations that when sam-
pling efforts are insufficient, as in our case in the field,
MRR estimates are underestimates. Moreover, since the
increase in population estimates with simulated popula-
tion size is highly predictable regardless of sampling de-
sign (adjusted-R2 > 0.88 in all linear regressions), we
could reasonably predict the population size that gener-
ates each year’s corresponding field estimates if we run
simulations of our sampling design across a series of in-
creasing population parameters (Table 2, Fig. S2). These
obtained “adjusted estimates” are well above the original
MRR estimates.

Conclusions

Our study combined agent-based modeling, field mark–
release–recapture (MRR) methods and natural history
surveys to show the large extent to which field-designs
and downstream model choices can influence the accu-
racy and variance of MRR-based population and lifespan
estimates. We emphasize the importance of foundational
natural history work in improving MRR-based estimates
and note several “pitfalls” in sampling design for conser-
vationists using MRR-based estimates of population size.
We suggest that agent-based models could also be applied
to adjust for existing population estimates.
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