Frontiers in Ecology and the Environment

Global extinctions of freshwater fishes follow peatland conversion in Sundaland

Xingli Giam, Lian Pin Koh, Heok Hui Tan, Jukka Miettinen, Hugh TW Tan, and Peter KL Ng

Front Ecol Environ 2012; doi:10.1890/110182

This article is citable (as shown above) and is released from embargo once it is posted to the *Frontiers* e-View site (www.frontiersinecology.org).

Please note: This article was downloaded from *Frontiers e-View*, a service that publishes fully edited and formatted manuscripts before they appear in print in *Frontiers in Ecology and the Environment*. Readers are strongly advised to check the final print version in case any changes have been made.

© The Ecological Society of America

Global extinctions of freshwater fishes follow peatland conversion in Sundaland

Xingli Giam^{1,2*}, Lian Pin Koh^{2,3,4}, Heok Hui Tan^{2,4}, Jukka Miettinen⁵, Hugh TW Tan^{2,4}, and Peter KL Ng^{2,4}

The peat swamp forests (PSFs) of Sundaland, in Southeast Asia, support many endemic freshwater fish species. However, the future of these species is in doubt, owing to ongoing PSF deforestation. Here, we show that, if current rates of PSF conversion to a predominantly agricultural mosaic landscape continue through 2050, 16 fish species may become globally extinct. In the worst-case scenario, where the rate of conversion across the region matches that of the most rapidly deforested river basin, 77% (79 of 102 species) of the narrowly adapted (stenotopic) fish species are likely to become extinct, a figure that would more than double known extinctions of the world's freshwater fishes. As indicated by our analysis, the PSFs of Indonesia's Central Kalimantan region would be most severely impacted.

Front Ecol Environ 2012; doi:10.1890/110182

Peatlands in the Sundaland biodiversity hotspot, which includes the Malay Peninsula and the islands of Borneo, Java, and Sumatra, constitute 36% (160 000 km²) of the global tropical peatland area (Miettinen and Liew 2010; Page *et al.* 2011). Peat swamp forest (PSF) – a lowland forest ecosystem characterized by restricted and distinctive floristic communities – forms atop peat soils derived from woody plant debris (Figure 1, a–c; Posa *et al.* 2011). PSFs were long assumed to be biologically impoverished (Janzen 1974), as the swampy terrain, dense spiny undergrowth, and highly acidic water (~ pH 3) combine to impede field research (Posa *et al.* 2011). In recent years, however, surveys have uncovered numerous freshwater fish species that are narrowly adapted (stenotopic) to the highly acidic blackwater streams in Sundaland's PSFs (Figure 1, d–m; eg Ng *et al.* 1994; Kottelat *et al.* 2006).

The future of these stenotopic fish species is threatened by the unabated conversion of Sundaland's PSFs to industrial-scale forestry and monoculture plantations (Figure 1, b and c; Koh *et al.* 2011). By 2010, more than 60% of Sundaland's PSFs have already been lost (Miettinen *et al.* 2012), yet few studies have assessed the threat to biodiversity from PSF conversion, particularly in terms of the risk and likely magnitude of species extinctions. Here, we forecast the magnitude and geography of fish species extinctions in Sundaland under alternative land-use change scenarios, to inform conservation policy in the region. Specifically we ask the following three questions: (1) how

¹Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ; ²Raffles Museum of Biodiversity Research, National University of Singapore, Singapore *(xgiam@princeton.edu); ³Department of Environmental Sciences, Eidgenössische Technische Hochschule Zurich, Zurich, Switzerland; ⁴Department of Biological Sciences, National University of Singapore, Singapore; ⁵Centre for Remote Imaging, Sensing, and Processing, National University of Singapore many fish species will likely become extinct if the current trajectory of land-use change continues to 2050? (2) Which fish species are the most vulnerable? (3) Which river basin is likely to lose the greatest number of fish species?

Methods

Delineation of basins and species dataset

Sundaland is a biogeographical region in Southeast Asia that includes the Malay Peninsula on the Asian mainland and the large islands of Borneo, Java, and Sumatra and their surrounding smaller islands. We identified independent PSF river basins by combining a map of river basins (FAO 2005) with a peatland land-cover map (Miettinen et al. 2012). Where peatland areas straddle one or more river basins, these were combined into a single PSF river basin. Thus, PSF river basins were considered independent when they are separated by at least one river basin that does not contain peatland. In total, 10 PSF river basins were included in our analysis (Figure 2). We collated a list of stenotopic PSF fish species native to each river basin by sampling 208 blackwater localities (ie PSF streams characterized by tea-colored water owing to high levels of humic acids) across Malaysia and Indonesia over the period 1991-2010. A variety of fishing gear - such as tray-nets, scoop nets, and seines - was used to obtain a comprehensive sample of fish species, based on the physical characteristics (eg stream width and depth) of each sampling locality. Despite the absence of a standardized sampling regime, data across localities were likely comparable given that the method was chosen to sample the fish assemblage as comprehensively as possible. To verify and improve the coverage of our dataset, we performed an exhaustive search of the published literature for distributions of fish species (eg species descriptions, taxonomic revisions, and checklists; WebTable 1).

To evaluate the completeness of our primary data (ie

Figure 1. Landscape and stenotopic fish biota of Sundaland's peatlands. Continuum of disturbance on peatlands: (a) a stream running through intact PSF in Sumatra, (b) a stream running through degraded PSF in Kalimantan, and (c) a canal in an oil palm estate. Stenotopic PSF species: (d) Paedocypris carbunculus, (e) Boraras merah, (f) Rasbora patrickyapi, (g) Kottelatlimia hipporhynchos, (h) Ompok supernus, (i) Parakysis notialis, (j) Betta brownorum, (k) Betta uberis, (l) Parosphromenus opallios, and (m) Sphaerichthys selatanensis.

obtained by sampling), we generated species accumulation curves and computed incidence-based coverage estimator (ICE) and Chao2 species estimators in EstimateS 8.2.0 (Colwell *et al.* 2004). Sampling completeness was high across all basins except for that of Borneo's Kapuas River. However, the inclusion of secondary data (ie obtained from the literature) ensured that the species list for each basin was complete. The total number of species in each basin, after including secondary data, was close to or exceeded the "true" species richness calculated by the species estimators (WebFigure 1). We used the total number of species (from primary and secondary data, not from species estimators) in our analysis.

Our final dataset consisted of 102 stenotopic PSF freshwater fish species restricted to the basins investigated in this study. Most major PSFs were included; the only exceptions were PSFs in the Mahakam basin (West Kalimantan, Indonesia) and the Kamparkiri-Siak region (Sumatra, Indonesia), for which species lists and/or landcover data were not available. Lists of sampling localities and literature consulted are presented in WebTable 1.

Scenarios of land-use change, 2010-2050

We calculated the deforestation rate in each river basin for the past decade by overlaying peatland land-cover maps for the years 2000 and 2010 (Miettinen *et al.* 2012) with basin boundaries (FAO 2005). The land-cover map identified five terrestrial land-cover types (forest, planta-tion/regrowth, mosaic, open, and urban). Because planta-tion/regrowth, mosaic, and open sites appeared to be similar for successive stages of PSF degradation, we pooled these areas to form a single "degraded peatland" category. The original land-cover type is thus forest, whereas degraded peatland and urban land cover are the two converted land-cover types.

In this analysis, we considered three scenarios of land-use change, projected to 2050: (1) business-as-usual (BAU), where basin deforestation rates estimated for 2000–2010 were applied to 2010–2050; (2) conservation (CON-SERV), where each basin's deforestation rate followed the slowest deforesting basin seen during the period 2000–2010 (except North Selangor [Figure 2], which was assigned a deforestation rate of zero because no deforestation occurred in 2000–2010); and (3) conversion (CONVERT), where each basin's deforestation rate followed the basin with the highest deforestation rate in 2000–2010. We assumed the ratio of urban to degraded peatland area in 2050 would be the same as that which existed in 2010. Summary land-cover statistics are presented in WebTable 2.

Although we did not have an a priori expectation of

the likelihood of each scenario – which depends on factors such as the future market demand for crops grown on peatlands (eg oil palm and pulpwood) and government policy – these scenarios represent a range of probable landuse change trajectories, given they are based on historical rates of PSF conversion.

Matrix-calibrated species-area model

We predicted the number of fish species that would become extinct under the three land-use change scenarios described above, using the matrix-calibrated species-area (MCSAM; Koh and model Ghazoul 2010). Our estimates represent the number of fish species that will eventually become extinct and not merely those that will be lost by 2050 (Thomas et al. 2004); a lack of information on the time lag between habitat loss and fish extinctions precluded the latter estimation.

The MCSAM, previously applied to forecast local bird extinctions following peatland conversion to oil palm plantations (Koh *et al.* 2011), recognizes that converted landscapes may support some forest biodiversity and

that different converted land-use types vary in their ability to support forest biodiversity (Gibson *et al.* 2011). Conversely, predictions from the conventional power-law species-area model (Arrhenius 1920) assume that all converted lands are completely inhospitable to forest biodiversity. Models are further explained in WebPanel 1.

The MCSAM is expressed as:

$$S_{new} = S_{orig} \left(\frac{A_{new}}{A_{orig}} \right) \gamma(\Sigma_i^n p_i \sigma_i) \qquad (\text{Equation 1}),$$

where A and S represent forest area and species richness, respectively, and the subscripts *orig* and *new* denote values before and after forest conversion. Additionally, p_i is the proportion of the *i*th converted land-use type relative to total converted land area, whereas σ_i is the sensitivity of the species assemblage toward the *i*th land-use type (calculated as the proportional reduction in species richness after conversion of forest into the *i*th land-use type). The γ constant reduces to the slope of the power-law model (z) when

Figure 2. Projected number of freshwater fish species extinctions (basin and global) under the three land-use change scenarios. The locations of the PSF river basins and the location of Sundaland in Asia are shown.

the converted area is completely inhospitable to the species assemblage ($\sum_{i}^{n} p_{i}\sigma_{i} = 1$).

MCSAM parameterization

The sensitivities of stenotopic PSF fish to degraded peatland and urban land cover (σ_i parameter) were assigned values of 0.667 and 1, respectively, based on a field study (Beamish *et al.* 2003; WebPanel 2). We estimated γ (equivalent to *z*, the slope of the power-law model in true island systems where the matrix is the completely inhospitable ocean) by compiling (fish) species–(basin) area relationships (SARs; following Drakare *et al.* 2006). We derived an estimate of $\gamma = 0.333$ ± 0.087 (mean \pm standard deviation [SD]) and used this value in the MCSAM (WebPanel 2). Parameter values used in the MCSAM are presented in WebTable 3.

Monte Carlo simulations to project basin extinctions

We performed Monte Carlo simulations to estimate the likely number of fish extinctions in each basin, while

Figure 3. Mean probability of global fish extinction under business-as-usual (BAU) deforestation rates for the 10 most vulnerable species (standard errors are presented in WebTable 4).

incorporating the uncertainty around the γ parameter in the MCSAM. For a total of 10 000 iterations, we drew γ from a positive-truncated normal distribution with mean and SD derived from the meta-analysis of SARs (WebPanel 2) to calculate the number of species after conversion S_{new} (Equation 1). The number of extinct species S_{ext} was calculated as the difference between the number of species before and after land-use conversion, rounded to the nearest integer (Equation 2):

$$S_{ext} = round (S_{orig} - S_{new})$$
 (Equation 2).

Global extinctions and relative species vulnerabilities

For every iteration of the Monte Carlo procedure, we sampled from each basin's species assemblage without replacement to generate a set of *n* extinct species, where *n* was predicted by the MCSAM (Equation 2). Giam et al. (2011) showed that local geographic range (number of drainages occupied by a species) is the best predictor of freshwater fish extinctions in Singapore. Moreover, habitat loss may exacerbate recruitment limitation in rare species (Rees et al. 2000; Myers and Harms 2009) owing to the "wastage" of individuals dispersed into unsuitable habitats, further predisposing rare species to extinction. We therefore assumed that the probability of each species going extinct in a basin is proportional to the number of sites in the basin for which each species is recorded (ie if species A is recorded from twice the number of sites as species B, then species B is twice as likely to go extinct as species A). Species added from published studies but not directly recorded in our surveys were assumed to be found in only one site in each basin. Given that all species considered in this analysis are restricted to PSFs in the 10 basins included in this study, we deemed a species as globally extinct when it is lost from all basins. By consolidating species extinctions across basins, we determined the

number of global extinctions in every iteration of the Monte Carlo procedure. We reported the mean (and its standard error [SE]) of the number of global extinctions across 10 000 iterations. In addition, we calculated the mean (and SE) of the number of global extinctions contributed by each basin.

To rank a species by its extinction vulnerability, we calculated the probability of each species becoming extinct by counting the number of iterations (out of 10 000) in which the species becomes globally extinct. We performed the Monte Carlo procedure 100 times and reported the mean (and SE) probability of each species becoming extinct. All analyses were conducted in R 2.13.1 (http://cran.r-project.org/).

Results and discussion

Out of 102 stenotopic species, the model predicts that an average of 16 (\pm 0.03 SE) species will be extinct globally by 2050 under the BAU scenario. The mean number of predicted extinctions increased to 79 (\pm 0.05) species in the CONVERT scenario and decreased to 9 (± 0.02) species in the CONSERV scenario (1.6% per annum) Global extinctions would be highest in the Central Kalimantan and Sadong basins in the BAU scenario, whereas Central Kalimantan and Kapuas-Sambas will experience the highest number of global extinctions in both the CONSERV and CONVERT scenarios (Figure 2). Similar patterns are evident for predicted extinctions at the basin level; the Sadong, Central Kalimantan, and Kapuas-Sambas PSF basins are expected to have the highest number of basin extinctions in the BAU, CON-SERV, and CONVERT scenarios, respectively. Across all scenarios, larger numbers of global extinctions are expected in basins with high endemic species richness and, in the BAU scenario, high rates of deforestation.

We assessed the relative extinction vulnerability of individual fish species, taking into account their distribution across basins, relative rarity within basins, and basin deforestation rates. Under the BAU scenario, the five most vulnerable species are *Encheloclarias prolatus* (Clariidae), *Betta brownorum* (Osphronemidae), *Sundadanio goblinus*, *Sundadanio margarition* (both Cyprinidae), and *Betta ibanorum* (Osphronemidae). Notably, *E prolatus*, which is restricted to the Sadong basin (Matang PSF) in Sarawak, Malaysia, has a 99% chance of becoming extinct under this scenario (Figure 3; WebTable 4).

Our projections assumed that order of habitat loss is independent of species richness patterns within each basin. Seabloom *et al.* (2002) showed that species–area models underestimate extinctions if habitat loss occurs first in areas with high species richness and endemicity. However, our assumption is reasonable for PSFs for at least two reasons. First, variation in species richness within a PSF is likely low because of its homogeneous physiography (eg low altitudinal variation, tributaries connected resulting from the high water table and seasonal floods). Second, there is no evidence to suggest PSF conversion follows species richness patterns. He and Hubbell (2011) suggested that the endemic species-area model (derived from counting the endemic number of species lost in each successively larger habitat area) is more accurate than species-area models (counting the difference in the number of species observed when going from a larger to a smaller habitat area) in predicting extinctions; vet the need for species abundance data which are rarely available for tropical species assemblages - precludes its application. Pereira et al. (2012) demonstrated that the conclusion derived by He and Hubbell (2011) is not generalizable because it depends on the scale and geometry of habitat loss. The MCSAM, on the other hand, recognizes that degraded environments may retain a fraction of the original forest biodiversity, an important point also highlighted by Pereira et al. (2012). Koh and Ghazoul (2010) also confirmed that the MCSAM predicts the number of extinct and threatened bird species in biodiversity hotspots more accurately than conventional models. Because of these advantages, we believe that MCSAM produces extinction projections that are more realistic than alternative models.

Globally, 60 freshwater fish species are known to have gone extinct (IUCN 2011). Our projections indicate that PSF conversion to a predominantly agricultural mosaic landscape in 2010–2050 will increase the number of extinctions by 26% (BAU scenario) and 132% (CON-VERT scenario). While this, to the best of our knowledge, is the first study to project global extinctions of freshwater fish, species-discharge models have been used to project basin-level (local) extinctions that will result from future climate change and rates of anthropogenic water use (Xenopoulos et al. 2005; Xenopoulos and Lodge 2006; Spooner et al. 2011). Xenopoulos et al. (2005) estimated local losses of 4-22% (interquartile range) of fish species across drying river basins globally by 2070. Under our BAU scenario, land-use change to 2050 is projected to drive 14–62% (interguartile range: 17–34%) of stenotopic PSF fish species to extinction in Sundaland. As discharge reduction is not expected in Sundaland's basins (Xenopoulos et al. 2005), land-use change is probably the major threat to PSF fishes in this region.

We recommend that countries include PSFs in longterm conservation monitoring exercises. The population trends of fish communities should be assessed, especially in endemic-species-rich, rapidly deforested basins where global and basin-level extinctions are projected to be high (eg Central Kalimantan and Sadong basins). In addition to community-level monitoring, highly vulnerable species should be regularly monitored for population and distributional changes. Our analysis identifies vulnerable species for which the International Union for Conservation of Nature (IUCN) conservation status is uncertain. Of the 10 most vulnerable species, *E prolatus*, *E tapeinopterus*, and *B burdigala* require updated assessments whereas the others have never been evaluated (IUCN 2011). We also recommend that the IUCN assess the conservation status of the most vulnerable fish species identified in this analysis. Besides establishing a baseline from which population and range changes can be monitored, IUCN species assessments can inform the protection of globally endangered species and their associated habitats through national legislation as well as through the identification of High Conservation Value Forests (HCV Consortium for Indonesia 2009), a voluntary land-scape management scheme that is widely adopted as a means of identifying set-aside conservation areas in production/plantation landscapes.

Currently, PSFs are being converted faster than any other forest type in Sundaland, largely because of the strong economic incentives for agricultural expansion (Koh *et al.* 2011). This is exacerbated by the misperception that PSFs are biodiversity-poor and therefore less worthy of protection than other lowland forest systems. Sundaland's PSFs are also important global storehouses of carbon (C); Indonesia and Malaysia store 67 gigatons of C in peat, representing 75% of total tropical peat soil C storage (Page et al. 2011). Carbon emissions resulting from large-scale conversion of this C sink (Miettinen et al. 2012) is expected to severely impact Earth's climate. The C payment scheme known as REDD+ (Reduced Emissions from Deforestation and Forest Degradation plus conservation, sustainable management of forests, and enhancement of forest carbon; UNFCCC 2010) may help offset the opportunity costs of conserving PSFs, thereby safeguarding its unique fish biota and C stocks. Indeed, in May 2011, the president of the Republic of Indonesia decreed a 2-year moratorium on new permits for converting PSFs as part of a bilateral REDD+ agreement with Norway (Instruksi Presiden Republik Indonesia No 10/2011; http://sipuu.setkab.go.id/PUU doc/17176/INPRES0102011.pdf). However, not all PSFs are included in this moratorium, and it remains to be seen if the regulations will be enforced. In the shorter term, regional governments need to muster the political will to stop, or at least slow, the rates of forest conversion in basins where global freshwater fish extinctions are projected to occur.

Acknowledgements

We thank D Wilcove, L Kaufman, A Dobson, S Pacala, L Parenti, R Clements, and KY Chong for discussions; P Tedesco for providing supplementary data; and KKP Lim for access to the Raffles Museum of Biodiversity Research records. XG thanks Princeton University, Wildlife Reserves Singapore, and Rufford Small Grants Foundation for support. HHT acknowledges funding from NUS (R-154-000-318-112, R-264-001-004-272, R-154-000-270-112) and the Raffles Museum of Biodiversity Research. JM acknowledges support from A*STAR of Singapore. LPK was supported by the Swiss National Science Foundation and the North–South Centre, ETH Zurich. We dedicate this paper to the memory of Navjot Singh Sodhi.

References

- Arrhenius O. 1920. Distribution of the species over the area. Meddelanden fran K Vetenskapsakademiens Nobelinstitut 4: 1–6.
- Beamish FWH, Beamish RB, and Lim SL-H. 2003. Fish assemblages and habitat in a Malaysian blackwater peat swamp. *Environ Biol Fish* **68**: 1–13.
- Colwell RK, Mao CX, and Chang J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. *Ecology* 85: 2717–27.
- Drakare S, Lennon JL, and Hillebrand H. 2006. The imprint of the geographical, evolutionary and ecological context on speciesarea relationships. *Ecol Lett* **9**: 215–27.
- FAO (Food and Agriculture Organization). 2005. Hydrological basins of Southeast Asia. www.fao.org/geonetwork/srv/en/metadata.show?id=12685&currTab=summary. Viewed 8 Dec 2010.
- Giam X, Ng TH, Lok AFSL, and Ng HH. 2011. Local geographic range predicts freshwater fish extinctions in Singapore. J Appl Ecol 48: 356–63.
- Gibson L, Lee TM, Koh LP, *et al.* 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. *Nature* **478**: 378–81.
- HCV Consortium for Indonesia. 2009. Guidelines for the Identification of High Conservation Values in Indonesia. English version. www.hcvnetwork.org/resources/national-hcv-interpre tations/Toolkit%20HCVF%20English%20version_final-26Jan10.pdf. Viewed 18 Jul 2011.
- He FL and Hubbell SP. 2011. Species–area relationships always overestimate extinction rates from habitat loss. *Nature* **473**: 368–71.
- IUCN (International Union for Conservation of Nature). The IUCN Red List of Threatened Species 2011. www.iucnredlist. org. Viewed 15 Feb 2012.
- Janzen DH. 1974. Tropical blackwater rivers, animals, and mast fruiting by the Dipterocarpaceae. *Biotropica* **6**: 69–103.
- Koh LP and Ghazoul J. 2010. A matrix-calibrated species–area model for predicting biodiversity losses due to land-use change. *Conserv Biol* **24**: 994–1001.
- Koh LP, Miettinen J, Liew SC, and Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. *P* Natl Acad Sci USA 108: 5127–32.

Kottelat M, Britz R, Tan HH, and Witte K-E. 2006. Paedocypris, a

new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world's smallest vertebrate. *P* R Soc B **273**: 895–99.

- Miettinen J and Liew SC. 2010. Degradation and development of peatlands in Peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. *Land Degrad Dev* **21**: 285–96.
- Miettinen J, Shi C, and Liew SC. 2012. Two decades of destruction in Southeast Asia's peat swamp forests. *Front Ecol Environ* **10**: 124–28.
- Myers JA and Harms KE. 2009. Local immigration, competition from dominant guilds, and the ecological assembly of pine savannas. *Ecology* **90**: 2745–54.
- Ng PKL, Tay JB, and Lim KKP. 1994. Diversity and conservation of blackwater fishes in Peninsular Malaysia, particularly in the North Selangor peat swamp forest. *Hydrobiologia* **285**: 203–18.
- Page SE, Rieley JO, and Banks CJ. 2011. Global and regional importance of the tropical peatland carbon pool. *Glob Change Biol* **17**: 798–818.
- Pereira HM, Borda-de-Água L, and Martins IS. 2012. Geometry and scale in species–area relationships. *Nature* **482**: E3–E4.
- Posa MRC, Wijedasa LS, and Corlett RT. 2011. Biodiversity and conservation of tropical peat swamp forests. *BioScience* **61**: 49–57.
- Rees M, Mangel M, Turnbull L, *et al.* 2000. The effects of heterogeneity on dispersal and colonization in plants. In: Hutchings MJ, John EA, and Stewart AJA (Eds). The ecological consequences of environmental heterogeneity. Oxford, UK: Blackwell Science.
- Seabloom EW, Dobson AP, and Stoms DM. 2002. Extinction rates under non-random patterns of habitat loss. P Natl Acad Sci USA 269: 11229–34.
- Spooner DE, Xenopoulos MA, Schneider C, and Woolnough DA. 2011. Coextirpation of host–affiliate relationships in rivers: the role of climate change, water withdrawal, and host specificity. *Glob Change Biol* **17**: 1720–32.
- Thomas CD, Cameron A, Green RE, et al. 2004. Extinction risk from climate change. *Nature* **427**: 145–48.
- UNFCCC (United Nations Framework Convention on Climate Change). 2010. Draft decision (-/CP.16): outcome of the work of the ad hoc working group on long-term cooperative action under the Convention. http://unfccc.int/files/meetings/cop_16/application/pdf/cop16_lca.pdf. Viewed 18 Jul 2011.
- Xenopoulos MA and Lodge DM. 2006. Going with the flow: using species-discharge relationships to forecast losses in fish biodiversity. *Ecology* **87**: 1907–14.
- Xenopoulos MA, Lodge DM, Alcamo J, *et al.* 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. *Glob Change Biol* **11**: 1557–64.

X Giam et al. – Supplementary Materials

WebPanel 1. Power-law model and matrix-calibrated species-area model (MCSAM)

Power-law model

The power-law model (Arrhenius 1920) is the classic species–area model used to project species extinctions following deforestation (Pimm *et al.* 1995; Brooks and Balmford 1996; Brooks *et al.* 1997; Brooks *et al.* 2002; Brook *et al.* 2003). The power-law model is expressed as:

 $S = cA^z$ (Equation 1),

where A and S refer to habitat area (forest) and species richness, respectively. The parameter c is a scale-sensitive constant which, together with z, the exponent, controls the rate of change in the number of species with area (shape of curve) (Rosenzweig 1995; Tjørve 2003).

When deforestation occurs and forest area is reduced from its original size A_{orig} to a new size A_{new} , we can calculate the remaining number of species S_{new} , if we know the original number of species S_{orig} , and the value of z:

$$S_{orig} = cA_{orig}^{\ z}$$
 (Equation 2)
 $S_{new} = cA_{new}^{\ z}$ (Equation 3).

Combining Equations 2 and 3, we get:

$$S_{new} = S_{orig} (\frac{A_{new}}{A_{orig}})^z$$
 (Equation 4).

Following that, the number of extinct species can be calculated by subtracting S_{new} from S_{orig} . The parameter z is often estimated from the relationship between area of oceanic islands and species richness. The model therefore assumes that deforested land is equivalent to the ocean in true island systems – that is, completely inhospitable to species. This assumption is likely to be unrealistic in most real-world scenarios. Indeed, human-modified landscapes, such as oil palm plantations, support some forest biodiversity (Fitzherbert *et al.* 2008) and different land-use types differ in their ability to support forest biodiversity (Gibson *et al.* 2011).

MCSAM

The MCSAM, on the other hand, takes into account the differential responses of biodiversity toward different converted land-use types (Koh and Ghazoul 2010). In this model, the parameter *z* is calibrated based on the overall sensitivity of the species assemblage toward the converted land-use type(*s*) (σ):

 $z = \gamma \sigma$ (Equation 5),

where γ is a constant and σ is the overall sensitivity of the species assemblage, quantified as the proportional reduction in the number of species after conversion ($0 \le \sigma \le 1$). When $\sigma = 0$ (no reduction in species; converted land is as good as original habitat [forest] for biodiversity), z = 0, and no extinctions will occur ($S_{new} = S_{old}$; Equation 4). When $\sigma = 1$ (loss of all species after conversion), $\gamma = z$ and the model reduces to the classical power-law model, where converted land is completely inhospitable to biodiversity.

If there are two or more converted land-use types, the overall sensitivity σ can be calculated as a weighted average of the sensitivity of the species assemblage toward each converted land-use type:

$$\sigma = \sum_{i}^{n} p_{i} \sigma_{i} \qquad \text{(Equation 6),}$$

where p_i is the proportion of the *i*th converted land-use type relative to total converted land area, while σ_i is the sensitivity of the species assemblage toward the *i*th land-use type (calculated as the proportional reduction in species richness after conversion of forest into the *i*th land-use type).

Combining Equations 5 and 6, we get the calibrated z parameter:

$$z = \gamma(\sum_{i}^{n} p_i \sigma_i)$$
 (Equation 7).

Combining Equations 4 and 7, we get the MCSAM:

$$S_{new} = S_{orig} \left(\frac{A_{new}}{A_{orig}}\right)^{\gamma(\sum_{i}^{n} p_i \sigma_i)}$$
(Equation 8).

WebPanel 2. MCSAM parameterization

Sensitivity of fish to the *i*th converted land-use type σ_i

The sensitivity of fish to urban land cover was set at 1 as species stenotopic to peatlands are unlikely to survive in concrete channels in urban areas. Degraded peatlands, on the other hand, do harbor some stenotopic PSF fish species, as seen from recent species discoveries (eg Tan and Kottelat 2008; Tan 2009). From our literature search, we found only one study that documented the proportional reduction of fish species associated with the conversion of an intact PSF to a plantation-mosaic landscape (ie degraded peatland; Beamish et al. 2003). In this study, fish were sampled across multiple sites over two sampling periods (ie before and after conversion, about 1.5 years apart) - four of five stenotopic PSF species were lost after conversion (WebTable 5). We therefore assigned this value (4/6 or 0.667) as the sensitivity of fish species toward degraded peatland. Although we recognize that the short length of time that elapsed between conversion and the second sampling period may not have allowed for fauna relaxation (ie the loss of all species that will eventually be extirpated) (Brooks et al. 1999), thus affecting the accuracy of the estimate, it remains the only available estimate derived from actual field data that allows us to project extinctions in a relatively unknown habitat. Moreover, this value falls within the range of values observed for birds, mammals, and invertebrates in degraded tropical forest in Southeast Asia (Sodhi et al. 2009), suggesting that it is reasonably reliable (WebFigure 2).

The constant γ (*z* in power-law SAR)

We compiled (fish) species–(basin) area relationships (SARs; following Drakare *et al.* 2006) to parameterize γ . As SARs are sensitive to habitat and climate type (Drakare *et al.* 2006), we only considered SARs of tropical forest basins. From the literature, we compiled four sets of SARs that encompass the major tropical forest regions of South America, Central America, West Africa (Tedesco *et al.* 2005), and Southeast Asia. We fit a log-linearized power-law

SAR model to each dataset and recorded the slope of the model (z) (WebTable 6). We calculated the mean and standard deviation of z to estimate the γ parameter in the MCSAM (Koh *et al.* 2011).

WebTable 1. List of (a) sampling localities and (b) literature consulted to build the species dataset. Geographic coordinates are available from authors upon request.

(a) Sampling localities

No	Description of locality	Date of sampling
	Ambat	
1	Malaysia, Johor: Stream about 25 km north of Desaru-Kota Tinggi Rd	14 Aug 1991
_	junction with Mawai; Kota Tinggi	-
2	Malaysia, Johor: Sg Selangi; 15 km from Kota Tinggi to Tg Sedili	27 Mar 1992
3	Malaysia, Johor: Sg Selangi; 15 km from Kota Tinggi to Tg Sedili	22 Apr 1992
4	Malaysia, Johor: Kota Tinggi; Mawai-Desaru Rd	15 Oct 1992
5	Malaysia, Johor: Kota Tinggi; Sg Tementang	13 Jan 1994
6	Malaysia, Johor: Kota Tinggi; Bukit Aping sign; stream ~20 km on	5 Jun 1995
_	turnoff to Desaru (~52.5 km before Desaru)	
7	Malaysia, Johor: ~20 km off turnoff towards Desaru, with Bukit Aping	31 Jul 1995
_	sign, ~54.5 km to Sungei Rengit	
8	Malaysia, Johor: Remnant swamp forest along coastal road between	20 Oct 2009
	Desaru and Tanjung Sedili, ~15 km before Sungei Sedili Kechil bridge	
9	Malaysia, Johor: Brown water stream draining from swamp forest along	20 Oct 2009
	road between Tanjung Sedili and Kota Tinggi	
10	Malaysia, Johor: Sungei Tementang, stream along road Kota Tinggi-	21 Oct 2009
	Kuantan, ~km 268.5 Kuantan/km 60.5 Johor Bahru	
	Banka	
1	Indonesia, Banka Island: Kawasan Sungai Liat, Kampung Jelit, 3 km	2 Mar 1993
	from main road (Sungai Liat) to Tanjung Persema Beach	
2	Indonesia, Banka Island: 96.5 km south of Pangkalpinang	3 Mar 1993
3	Indonesia, Banka Island: 99.4 km south of Pankalpinang, 2.6 km north	3 Mar 1993
_	of Serdang	
4	Indonesia, Banka Island: 4 km before Kampung Bikang from	3 Mar 1993
	Pangkalpinang	
5	Indonesia, Banka Island: 2 km before Kampung Bikang from	3 Mar 1993
	Pangkalpinang, degraded swamp forest	
6	Indonesia, Banka Island: Between Kampung Kurau and Kampung	3 Mar 1993
	Balilik, 25 km north of Koba	
7	Indonesia, Banka Island: 9 km east of Muntok	3 Mar 1993
8	Indonesia, Banka Island: Heath forest 2 km east of Kampung Bilek	3 Mar 1993
9	Indonesia, Banka Island: Kampung Tebing, 65.5 km east of Muntok	3 Mar 1993
10	Indonesia, Banka Island: 3 km north of Payung	3 Mar 1993
11	Indonesia, Banka Island: 5.5 km north of Payung	5 Mar 1993
12	Indonesia, Banka Island: 28 km north of Payung	5 Mar 1993
13	Indonesia, Banka Island: Mongkol Forest Reserve (Hutan Lindung	7 Mar 1993
	Mongkol)	

	Batang Hari-Indragiri	
1	Indonesia, Sumatra, Jambi: Sg Alai at 28 km on road Muara Bungo-M	30–31 May 1994
	Tebo between 0.5 hour by motorboat downriver of bridge to about 1	
	hour upriver, including small tributaries and Danau Gresik	
2	Indonesia, Sumatra, Jambi: Danau Jamining near Kg Transos ~5 km on	31 May 1994
	unpaved road to south of road Muara Bungo-Muara Tebo at km 36 (12	
	km before M Tebo); tributary of Sg Tebo; area cleared about 10 years	
	before; pH 6.1; Bk4–55	
3	Indonesia, Sumatra, Jambi: Danau Semangkat, a lake connected to	6 Jun 1994
	Batang Hari by Sg Bangko.	
4	Indonesia, Sumatra, Jambi: swamp near Pematang Lumut, 40 km before	7 Jun 1994
	Kuala Tungkal on road from Jambi (95 km) and Simpangtuan (36 km).	
5	Indonesia, Sumatra, Jambi/Riau: Peat swamp draining into Sg	15 Jun 1995
	Bengkwan, tributary of Indragiri River	
6	Indonesia, Sumatra, Jambi: stream with grassy banks near	15 Jun 1995
	Pangkalankasai, 43 km from Rengat on Rengat-Jambi Road; pH 5	
7	Indonesia, Sumatra, Jambi, swamp forest 1 km from Pamatang-Lumut	15 Jun 1995
	between Jambi and Rengat; pH 4.1	
8	Indonesia, Sumatra, Jambi: Berbak Nature Reserve, Sg Air Hitam	16 Jun 1995
	Dalam; pH 4.0 Blackwater	
9	Indonesia, Sumatra, Jambi: Danau Pinang, lake in forest connected to Sg	28 May1996
	Pijoan	
10	Indonesia, Sumatra, Jambi: T-junction of Sg Pijoan; ~half-hour by boat	28 May 1996
	upriver of Pijoan	
11	Indonesia, Sumatra, Jambi: Sg Keruh; ~2 km south of main road at km	28 May 1996
	23 on road Jambi-Tembesi (tributary of Sg Pijoan)	
12	Indonesia, Sumatra, Jambi: Sg Bakung, north tributary stream adjoining	29 May 1996
	Danau Arang Arang and Sunagi Arang Arang, Arang Arang	
13	Indonesia, Sumatra, Jambi: Danau Arang Arang, 2 stations at eastern	29 May 1996
	end	
14	Indonesia, Sumatra, Jambi: Danau Rasau, a black water lake draining to	2 Jun 1996
	Batang Hari, opposite Kampung Rantau Panjang	
15	Indonesia, Sumatra, Jambi: Ayer Hitam, Darkie water reserve	6 Jun 1996
16	Indonesia, Sumatra, Jambi: Second stream on road towards Muara	7 Jun 1996
	Bulian, after interjunction at crossroads towards Palembang, Muara	
	Bulian and Jambi	
17	Indonesia, Sumatra, Jambi: Pijoan, Danau Souak Padang	8 Jun 1996
18	Indonesia, Sumatra, Jambi: Bayou (peat swamp forest) Rantau Panjang,	1 Nov 1996
	~30 minutes (row) behind Kg Rantau Panjang	
19	Indonesia, Sumatra, Jambi: Pijoan, Leibong Sepbaju, stream in swamp	21 Nov 1996
	forest	
20	Indonesia, Sumatra, Jambi: Sg. Ayer Merah, feeder stream to Danau	21 Nov 1996
	Souak Padang ~15 minutes (row) upstream	
21	Indonesia, Sumatra, Jambi: East Jambi, peat swamp forest 15 km east	22 Nov 1996
	from turnoff towards Muara Sabak	
22	Indonesia, Sumatra, Jambi: East Jambi, stream next to swamp forest and	22 Nov 1996
	rubber plantation, km 32 into turnoff (westwards) to Pematang Lumut	
_	before turnoff to Kuala Tungkal	
23	Indonesia, Sumatra, Riau: Upper part Indragiri, Sg Jakil, swamp forest	25 Nov 1996
24	Indonesia, Sumatra, Jambi: Sumatra: Jambi, Danau Arang Arang	25 Jul 1997
	(Muara Kompeh area), brown water lake	
25	Indonesia, Sumatra, Jambi: Sg Bakong, tributary to Danau Arang Arang,	25 Jul 1997

Date of sampling

No Description of locality

No	No Description of locality Date of sa	
	swamp forest	
26	Indonesia, Sumatra: South Sumatra, Sungai Sentang, ~20-minute walk through rubber plantation and swamp forest after 4.8 km drive in, 12 km from Jambi to Bayung Lencir (216 km to Palembang), near Desa	27 Jul 1997
	Sukajaya	
27	Indonesia, Sumatra: South Sumatra, ~1 hour upstream from access road to Sungei Merdak, 12 km into Desa Suka Jaya	11 Dec 2003
	Central Kalimantan	
1	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Kec. Sabangau; Sungai Kanan Besar, blackwater canal on west side of Sungai Sabangau	22 Aug 2009
2	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Kec Sabangau; man-made logging canal on east side of Sungai Sabangau	22 Aug 2009
3	Indonesia, Kalimantan Tengah: Rungan-Kahayan basin, Sungei Rijak, km 84 along road from Palangkaraya to Telakin	18 Sep 2007
4	Kalimantan Tengah: Mangkutup-Kapuas basin	19 Sep 2007
5	Indonesia, Kalimantan Tengah: Kahayan basin; Sebangau River, feeder stream and fisherfolk's catch	21 Sep 2007
6	Indonesia, Kalimantan Tengah: Rungan-Kahayan basin, blackwater stream at km 46 Palangkaraya-Kasongan Road	27 Sep 2007
7	Indonesia, Kalimantan Tengah: Kahayan basin, Rungan River; Sungei Panta, blackwater river draining into Rungan River and its confluence, connected to Nyaru Menteng (village)	5 Mar 2008
8	Indonesia, Kalimantan Tengah: Kahayan basin, Rungan River; Tangkiling, blackwater stream after km 46 Palangka Raya-Kasongan	5 Mar 2008
9	Kalimantan Tengah: Sebangau basin, Sebangau River; blackwater canal draining from forest, left side upstream of village	6 Mar 2008
10	Kalimantan Tengah: Sebangau basin, Sebangau River; blackwater canal draining from forest, right side upstream of village	6 Mar 2008
11	Kalimantan Tengah: Sebangau basin, Sebangau River; blackwater canal draining from forest, left side upstream of village	6 Mar 2008
12	Kalimantan Tengah: Kapuas basin; Bargugus, blackwater stream ~47 km after bridge over Kahayan River at Palangka Raya	7 Mar 2008
13	Kalimantan Tengah: Kapuas basin; Bukit Gelaga, stream ~15 km into left side-road from turnoff to Bargugus	7 Mar 2008
14	Indonesia, Kalimantan Tengah: Kahayan basin, Rungan River; blackwater stream at km 80 Palangka Raya-Tumbang Telakian road, access via km 45 Palangka Raya-Kasongan road	8 Mar 2008
15	Kalimantan Tengah: Kotawaringin basin; Pangkalan Bun outskirts, blackwater ditch along road to Kumai Terminal	10 Mar 2008
16	Kalimantan Tengah: Kotawaringin basin; Sungei Pasir Panjang, outskirts of Pangkalan Bun, along road leading to Kumai	11 Mar 2008
17	Kalimantan Tengah: Kotawaringin basin; Sungei Karang Enyir, outskirts of Pangkalan Bun, connected to Sungei Bamban via ditch; near Kampung Karang Panjang	12 Mar 2008
18	Kalimantan Tengah: Kumai basin; Sungei Nyeri, blackwater river near Kampung Seitendang (Seit = river)	12 Mar 2008
19	Kalimantan Tengah: Kotawaringin basin; Sungei Bu'un, along road towards Pangkalan Bun; near car wash	12 Mar 2008
20	Kalimantan Tengah: Mentaya basin; Pundu-Plantarang area, Sungei Kora, km 148 Palangka Raya-Sampit road	14 Mar 2008
21	Kalimantan Tengah: Mentaya basin; Pundu-Plantarang area, stream at	14 Mar 2008

No	Description of locality	Date of sampling
	km 142 Palangka Raya-Sampit road. Swollen by rains, tea colour water,	
	fast flowing, peaty-sand bottom.	
22	Indonesia, Kalimantan Tengah: Kahayan basin; Bereng Bengkel,	15 Mar 2008
	Kecamatan Sabangau, access via track at 20 km along Palangka Raya-	
	Banjarmasin road: Blackwater swampy area: Selambau (long net) and	
	scoop net	
23	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Rungan River	15 Aug 2009
-	basin: Sungai Hampangen, ~50 km from Palangka Raya to Kasongan:	
	UNPAR educational forest plot; heath forest, black water, white sand	
	base, peaty banks with large root mats	
24	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Kahayan basin:	16 Aug 2009
	Sungai Tahai, flowing into Rungan River, ~30 km outside of Palangka	
	Rava town	
25	Indonesia Kalimantan Tengah: Kota Palangka Raya: Kahayan hasin:	17 Aug 2009
20	Danau Sangumang an oxbow lake flowing into Rungan River opposite	17 Hug 2009
	Danau Tahai	
26	Indonesia Kalimantan Tengah: Kota Palangka Raya: Kahayan hasin:	18 Aug 2009
20	Bukit Tangkiling, dam and government fisheries hatchery centre	10 Mug 2007
27	Indonesia, Kalimantan Tangah: Kabupatan Pulong Pisau: Kabayan	20 Aug 2000
21	having Dangu Sabuah, western and linking to Dangu Tahang	20 Aug 2009
- 20	Indonesia Kalimentan Tangah: Kota Dalangka Dava: Tahai junation of	21 Aug 2000
28	Sungoi Tahai with Danay Tahai	21 Aug 2009
- 20	Suligai Taliai Willi Dallau Taliai	21 Arra 2000
29	Indonesia, Kalimanian Tengan: Kola Palangka Raya: Tanal, Sungai	21 Aug 2009
	Panta; dried out river connected to Rungan River. Clayey bottom,	
- 20	stagnant pools of water at bottom of river channel.	21.4 2000
30	Indonesia, Kalimantan Tengan: Kota Palangka Raya: Tanai, Sungai	21 Aug 2009
	Danau Bunter, draining from Danau Bunter; clayey bottom, warm water	
- 21	draining from oxbow lake	22 4 2000
31	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Kec Sabangau;	22 Aug 2009
	blackwater stream on east side of Sungai Sabangau; peaty bottom, banks	
	with Pandanus, draining from forest about 2 km upstream	22 + 2 000
32	Indonesia, Kalimantan Tengah: Kota Palangka Raya: Kec. Sabangau,	22 Aug 2009
	Kereng Bangkirai, Sungai Sabangau	
	East Peninsular Malaysia	
1	Malaysia, Johor: About km 177, Johor Bahru-Kuantan Road (north of	19 Oct 1991
	Mersing)	
2	Malaysia, Pahang: About 100 km south of km 68, Johor Bahru-Kuantan	19 Oct 1991
3	Malaysia, Pahang: About 100 km south of km 16, Johor Bahru-Kuantan	19 Oct 1991
4	Malaysia, Pahang: About 500 m before km 10 from Kuantan to	20 Oct 1991
	Gambang	
5	Malaysia, Pahang: About 200 southwest of km 33 Segamat-Kuantan	20 Oct 1991
	Road	
6	Malaysia, Pahang: About 200 m north of km 16 Johor Bahru-Kuantan	20 Oct 1991
	Road. Sg Soi	
7	Malaysia, Pahang: Km 88 Kuantan-Mersing Road; Blackwater	9 Mar 1992
8	Malaysia, Pahang: Pool along Mersing-Pekan Rd (73 km to Kuantan,	9 Mar 1992
	400 m Sg Beto)	
9	Malaysia, Pahang: Km 69, Mersing-Kuantan Road; Blackwater stream	9–10 Mar 1992
	across road	
10	Malaysia, Pahang: Km 69, Pekan-Mersing Road. Blackwater 1km north	10 Mar 1992
	of 3°22'4.1"N, 103°25'13.8"E	
11	Malaysia, Pahang: Pekan-Mersing Road	10 Mar 1992

No	Description of locality Date of sample	
12	2 Malaysia, Terengganu: Rantau Abang, km 56 Kuantan-Kuala 18 Mar 1	
	Terengganu Road	
13	Malaysia, Pahang: Creek on road from Segamat to Kuantan, 88 km	23 Jul 1992
	before Kuantan	
14	14 Malaysia, Pahang, Km 16 on road from Kuantan to Pekan 23	
15	15 Malaysia, Pahang, Km 66 on road Kuantan-Pekan-Mersing	
16	Malaysia, Pahang: Km 68 to Kuantan	15 May 1995
17	Malaysia, Terengganu: Cukai, stream across road at ~km 20 along	27 Feb 2009
	Kamaman-Kuala Terengganu road linking Mukim Bijai to Mukim Ibuk	
18	Malaysia. Terengganu: Cukai, stream across road at ~km 21.5 along	27 Feb 2009
10	Kamaman-Kuala Terengganu road linking Mukim Bijaj to Mukim Ibuk	271002009
19	Malaysia Terengganu: Cukai stream across road at ~km 25 along	27 Feb 2009
17	Kamaman-Kuala Terengganu road linking Mukim Bijaj to Mukim Ibuk	271002009
20	Malaysia Pahang: Stream across road at km 264 Johor Bahru/km 65	1 Mar 2009
20	Kuantan along Pekan-Rompin road: and 400 m south stream between	1 1/1ai 2007
	km 264 and km 263 Johor Bahru	
21	Malaysia Pahang: Brown water river across Karak Highway (from	2 Mar 2009
21	Kuala Lumpur to Cukai) ~km 34 Cukai	2 Will 2009
22	Malaysia Pahang: Pekan blackwater stream along road ~km 10	3 Mar 2009
	Pekan/km 37 Kuantan road	5 Wiai 2007
23	Malaysia Pahang: Taa colour stream along access road to south shore of	3 Mar 2000
23	Tasik Chini ~5 km before Tasik Chini	5 Wiai 2009
24	Malaysia Dahang: Stroom flowing from south bank of Sungai Dahang	3 Mar 2000
24	along Deken Mentinge road, at km 13, 14	5 Iviai 2009
25	Malaysia Dahang: Ditch parallal to road along Dakan Tasik Chini road	4 Mar 2000
23	near km 3 Dekan/km 45 Mentinga	4 Iviai 2009
26	Malaysia Pahang: Pools along stream hed in swamp forest of Forest	/ Mar 2009
20	Reserve at junction of Kampong Laban Condong (along Pakan Rompin	4 Iviai 2009
	road) and road 63 to Muadzam Shah	
27	Malaysia Pahang: Stream across road at -31 km before Muadzam Shah	4 Mar 2000
21	along road 63	4 Mai 2007
28	Malaysia Pahang: Stream across road at km 38 Kuala Rompin/km 51	5 Mar 2009
20	Rukit Ibam along road 63 Kampong Leban Condong Muadzam Shah	5 Wiai 2007
	remnant swamn forest	
29	Malaysia Pahang: Stream across road at ~km 35.5 Kuala Romnin/km	5 Mar 2009
2)	53.5 Bukit Ibam along road 63 Kampong Leban Condong-Muadzam	5 Wiai 2007
	Shah	
	Shan	
	Kapuas-Sambas	
1	Indonesia, Kalimantan Barat: Kabupaten Sambas: Sg. Sinabar,	18 Apr 1998
	blackwater tributary of Sg Sambas; (01°22.27'N, 109°31.53'E); pH 4.7;	1
	Bk10-white papers	
2	Indonesia, Kalimantan Barat: Kabupaten Sintang: small tea-colour	21 Apr 1998
	stream at ~km 402 Pontinanak on Sintang-Putussibau Road	1
3	Indonesia, Kalimantan Barat: Kabupaten Sintang: blackwater stream at	22 Apr 1998
-	~km 373.5 Pontianak on Sekadau-Sintang road. ~11.3 km towards	r
	Sekadau from Sintang	
4	Indonesia, Kalimantan Barat: Kabupaten Sintang: tea-colour stream at	22 Apr 1998
•	~km 377 Pontianak on Sekadau-Sintang road, near junction to Nanga	pi 1990
	Pinoh	
5	Indonesia, Kalimantan Barat: Kabupaten Sintang: unnamed blackwater	23 Apr 1998
C	tributary at ~ 2 km into Sg Ketungau (00°23.70'N 111°37.21'E)	pi 1990
6	Indonesia, Kalimantan Barat: Kabupaten Sanggau: blackwater stream at	25 Apr 1998
	,	

No	Description of locality	Date of sampling
	km 352 Pontianak on Sekadau-Sintang road	
7	Indonesia, Kalimantan Barat: Kabupaten Pontianak: Sg Laur, tea-colour	26 Apr 1998
	tributary of Danau Perkat, draining into Sg Tayan	-
8	Indonesia, Kalimantan Barat: Kabupaten Pontianak: Lubok Raundal	26 Apr 1998
	(lake), ~500 m walk inland from Sg Tayan	-
9	Indonesia, Kalimantan Barat: Kabupaten Pontianak: Sg Jelimpo,	28 Apr 1998
	blackwater stream at Anjungan ~1 km east of 00°21.02'N 109°11.08'E	-
10	Indonesia, Kalimantan Barat: Kabupaten Pontianak: peat swamps at	28 Apr 1998
	Anjungan 'D', ~8 km west into side road at km 66 Pontianak on	-
	Pontianak-Anjungan road	
11	Indonesia, Kalimantan Barat: Kabupaten Pontianak: freshwater swamp	28 Apr 1998
	forest ~1 km east of THH9858, Kg Anjungan	
12	Indonesia, Kalimantan Barat: Kabupaten Pontianak: Sg Kepayan,	29 Apr 1998
	blackwater brook at km 58 Pontianak on Pontianak-Anjungan road, ~7	
	km before Kg Anjungan	
13	Indonesia, Kalimantan Barat: Kabupaten Pontianak: peat swamps ~200	29 Apr 1998
	m west of Sg Kepayan	
14	Indonesia, Kalimantan Barat: Kapuas basin, Melawi sub-basin; Sungei	15 Aug 2007
	Sawak, blackwater stream at km 377 to Pontianak, along road from	
	Sintang to Pontianak, near turnoff to Nanga Pinoh (00°01.421'S	
	111°26.993'E)	
15	Indonesia, Kalimantan Barat: Kapuas basin; Anjungan, Sungei Kepayan	17 Aug 2007
	Hulu, peat swamp forest $(00^{\circ}19.208^{\circ}N \ 109^{\circ}09.665^{\circ}E)$, 45 m above sea	
	level; peat swamp, access via track at km 60 Pontianak along old coastal	
	road, about 1 km along logger's plank track, closed canopy	
	North Selangor	
1	Malaysia, Selangor: North Selangor Peat Swamp Forest, in stream near	15 May 1991
	padi field on western boundary	
2	Malaysia, Selangor: North Selangor Peat Swamp Forest, along north-	15 May 1991
	western boundary	
3	Malaysia, Selangor: North Selangor Peat Swamp Forest, in puddle along	15 May 1991
	logging trail	15 10 1001 10 00
4	Malaysia, Selangor: North Selangor Peat Swamp Forest, in large canal	15 May 1991,18–20
	along mud track on forest outskirts	Jun 1991
5	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream at km	1 / Jun 1991
6	34 Indix on Todu to Tg Malini Malaysia, Salangari North Salangar Dast Swamn Forest, stream 0.2 km	17 Jun 1001
0	from km 45 mark on road to Sg Besar	1 / Juli 1991
7	Malaysia Selangor: North Selangor Peat Swamp Forest 0.8 km from	18 Jun 1001
,	km 45 mark on road to Sg Besar	10 3011 1771
8	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream at km	18 Jun 1991
-	50 mark to Tg Malim (United Plantations Bhd)	
9	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream at km	18–19 Jun 1991
	43 marker on road to Sg Besar	
10	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream at km	18–19 Jun 1991
	47 mark on road to Tg Malim	
11	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream at 0.7	19 Jun 1991
	km from km 41 mark on road to Tg Malim	
12	Malaysia, Selangor: North Selangor Peat Swamp Forest, Sg Tengi	19–20 Jun 1991
13	Malaysia, Selangor: North Selangor Peat Swamp Forest, pool at about	20 Jun 1991
	km 47 on road to Tg Malim	
14	Malaysia, Selangor: North Selangor Peat Swamp Forest, 39 km mark on	24 Aug 1991

No	Description of locality	Date of sampling
	Sg Besar-Tg Malim Road (43 km from Tg Malim to Sg Besar)	
15	Malaysia, Selangor: 32 km Rawang-Kuala Selangor Road	24 Aug 1991
16	Malaysia, Selangor: North Selangor Peat Swamp Forest, 50 km mark on	25 Aug 1991
	Sg Besar-Tg Malim Road (United Plantations Bhd)	C
17	Malaysia, Selangor: North Selangor Peat Swamp Forest, 0.2 km from 37	25 Aug 1991
	km mark on Sg Besar-Tg Malim Road	8
18	Malaysia Selangor: North Selangor Peat Swamp Forest 0.5 km from 36	25 Aug 1991
10	km mark on So Besar-To Malim Road	20 110g 1991
19	Malaysia Selangor: North Selangor Peat Swamp Forest 0.65 km from	25 Aug 1991
17	35 km mark on Sg Besar-Tg Malim Road	25 / 105 1991
20	Malaysia Selangor: North Selangor Peat Swamp Forest 43 km on To	1/1 Sep 1001
20	Malaysia, Setangor. North Setangor reat Swamp rotest, 45 km on rg Malim-Sg Besar Road	14 Sep 1771
21	Malaysia Salangor: North Salangor Peat Swamp Forest between 43 and	22 Jun 1002
21	33 km. Ta Malim-Sa Besar Road	: : Juli 1992
22	Malaysia, Salanger: North Salanger Deat Sysam Forest, 0.2 km from	18 Sap 1002
	Imalaysia, Selangor. North Selangor Feat Swamp Forest, 0.2 km from	18 Sep 1992
- 22	Malaysia Salangaru North Salangar Daat Swamn Forgat Se Darah Ulu	10 Sam 1002
23	Malaysia, Selangor: North Selangor Peat Swamp Forest, Sg Perak, Ulu	19 Sep 1992
	Basir, north bank of Sg Bernam	10.0 1002
24	Malaysia, Selangor: North Selangor Peat Swamp Forest, Sg Perak, north	19 Sep 1992
	shore of Sg Bernam	10.0 1000
25	Malaysia, Selangor: Bridge at km 32, Rawang-Kuala Selangor Road	19 Sep 1992
26	Malaysia, Selangor: 800 m from junction of Batu Arang Road and	20 Sep 1992
	Rawang-Kuala Selangor Road	
27	Malaysia, Selangor: North Selangor Peat Swamp Forest, Sabak Bernam	?? Apr 1993
28	Malaysia, Selangor: North Selangor Peat Swamp Forest, Sabak Bernam	?? Sep 1993
29	Malaysia, Selangor: North Selangor Peat Swamp Forest, unnamed	?? Sep 1994
	stream	
30	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 43 to	21 Dec 1994
	Sungei Besar, along road to Sungei Besar from Tanjung Malim	
31	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 36 to	5 Jan 2005
	Sungei Besar, km 46 to Tanjung Malim; blackwater ditch draining from	
	remnant peat swamp	
32	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 37.5 to	5 Jan 2005
	Tanjung Malim; blackwater ditch	
33	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 39.5 to	5 Jan 2005
	Tanjung Malim, blackwater ditch	
34	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 40 to	5 Jan 2005
	Tanjung Malim, km 42 to Sungei Besar; blackwater ditch	
35	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 34 to	5 Jan 2005
	Tanjung Malim, km 48 to Sungei Besar; blackwater ditch (03°40.364'N	
	101°20.389'E)	
36	Malaysia, Selangor: North Selangor Peat Swamp Forest, km 49 to	5 Jan 2005
	Sungei Besar; blackwater ditch	
37	Malaysia, Selangor: North Selangor Peat Swamp Forest, blackwater	27 Mar 2006
	ditch along road near km 39 to Tanjung Malim (km 43 to Sungei Besar)	
38	Malaysia, Selangor: North Selangor Peat Swamp Forest, blackwater	27 Mar 2006
	ditch along road near km 43 Tanjung Malim	
39	Malaysia, Selangor: North Selangor Peat Swamp Forest, blackwater	27 Mar 2006
	pools by road side near km 44 to Tanjung Malim	
40	Malaysia, Selangor: North Selangor Peat Swamp Forest, blackwater	27 Mar 2006
	ditch ~200 m before km 36 to Tanjung Malim (km 46 to Sungei Besar)	
41	Malaysia, Selangor: North Selangor Peat Swamp Forest, seepage stream	2 Jan 2009

No	o Description of locality Date of samp		
	near km 35 Tanjung Malim road		
42	Malaysia, Selangor: North Selangor Peat Swamp Forest, stream near km	2-3 Jan 2009	
	37 Tanjung Malim road		
	Rajang		
1	Malaysia, Sarawak: Sibu area, 4.2 km north of airport runway on Jl	15 May 1994	
	Teku	•	
2	Malaysia, Sarawak: Sibu area, Sg Sibong, ~1 km north of Durin fessy	15 May 1994	
	on Sri Aman-Sibu Road	Ĵ	
3	Malaysia, Sarawak: Sibu, blackwater ditch near remnant peat swamp	3 Mar 1998	
-	forest, behind old site of Sibu airport		
4	Malaysia Sarawak: Sibu Sungei Nibung just north of Durin bridge	14 May 2008	
	over Reiang River	1110 u y 2000	
5	Malaysia Sarawak: Sibu Kemuyang area heath/neat swamp along	15 May 2008	
5	road to Sibu Golf Course, leading to city dump	15 Way 2000	
	Toad to stou oon course, leading to enty dump		
	Sadong		
1		2 1 1 1002	
1	Malaysia, Sarawak: Blackwater stream in forest at km / on road from	3 Jul 1992	
	Kuching to Batu Kawa		
2	Malaysia, Sarawak: 11.8 km before turnoff to Sg Cina Matang, ~10 km	4 Sep 1995	
	from Kuching		
3	Malaysia, Sarawak: Batu Kawa area, ~2 km after bridge, ~10 km from	13 Jan 1996	
	Kuching town, Taman Koperkusa		
4	Malaysia, Sarawak: Batu Kawa - Matang area, up to 50 m before	14 Jan 1996	
	blackwater river		
5	Malaysia, Sarawak: Ditch along road from Kuching to Matang, ~8.5 km	14 Jan 1996	
	after Sg Sarawak bridge		
6	Malaysia, Sarawak: Matang area, near water treatment plant	15 Jan 1996	
7	Malaysia, Sarawak: 8.3 km after Gedong, ~200 m into peat swamp	16 Jan 1996	
	forest from left side of road towards Gedong, ~11.0 km after turnoff		
	towards Gedong from Serian-Sri Aman road		
8	Malaysia, Sarawak: 11.1 km after Gedong, towards Serain-Sri Aman	16 Jan 1996	
	road. ~50 m into peat swamp forest		
9	Malaysia, Sarawak: Blackwater river before Matang. ~5km before	30 Aug 1996	
-	turnoff to Batu Kawa from 500 m into river bank to the main	0011081990	
	confluence		
10	Malaysia Sarawak: Peat swamp forest 11.4 km towards Gedong from	31 Aug 1996	
10	turnoff on Serian-Sri Aman road	51 1142 1990	
	Malaysia Sarawak: Sa Stunggang 1.8 km before Lundu ferry point at	2 Sep 1996	
11	Ra Kayan	2 Sep 1990	
12	Malaysia Sarawak: Doot swamp forget 28.1 km towards Simunian	1 Sap 1006	
12	from Kuching Sri Amon rood	4 Sep 1990	
12	Molovojo, Sorovolu Doot ovorme forgat at Dalai Dingin. 0.5 km ofter Sa	5 Sam 1006	
15	Malaysia, Salawak. Peat swamp lorest at Dalar Kingin, ~0.5 kin after Sg	5 Sep 1990	
1.4	Kerang, towards Sri Aman	2.0 / 1000	
14	Malaysia, Sarawak: Bau-Lundu area, Sungai Stunggang, swamp forest,	2 Oct 1998	
	51.0 km towards Lundu from Bau on Bau-Lundu road	44 ¥ 4 600-	
15	Malaysia, Sarawak: Matang peat swamps, along road from Kuching to	11 Jul 2007	
<u> </u>	Matang, before turn-off to Batu Kawa/Lundu		
16	Malaysia, Sarawak: Sungei Stunggang, swamp forest stream along road	11 Jul 2007	
	from Kuching to Lundu, before Batang Kayan bridge		
17	Malaysia, Sarawak: Kuching area, remnant peat swamp at Matang,	12 May 2008	
	along Jalan Ma Ong, next to telecommunications tower, about 15 km		

No	Description of locality	Date of sampling
	after blackwater river along road from Kuching to Kubah National Park	
18	Malaysia, Sarawak: Simunjan area, remnant swamp forest ~10 km into	16 May 2008
	road towards Simunjan, along Serian-Sri Aman road (near turnoff to	
	Kampung Minggu)	
19	Malaysia, Sarawak: Sematan, stream flowing into Sungei Sematan,	10 Oct 2009
	along road to Kampung Sebako; remnant swamp forest	
	West Johor	
1	Malaysia, Johor: Johor near Pontian	4 Mar 1992
2	Malaysia, Johor: Near Pontian, Kg Jasa Sepakat	4 Mar 1992
3	Malaysia, Johor: Pontian, Sri Bunian, Kg Pt. Tekong (Pt 112)	8 May 1992
4	Malaysia, Johor: About 3 km north of Ayer Hitam, North Bank of Sg	6 Aug 1992
	Sambrong in swamp forest	C C
5	Malaysia, Johor: Ayer Hitam, blackwater peat swamp ~87 km to Johor	8 Dec 1994
	Bahru on N–S highway (Site 1)	
6	Malaysia, Johor: Pontian, ~4 km before Sri Bunian towards Johor Bahru	1Aug 1995
	direction, Kampung Jasa Sapakat (PT 2/26)	
7	Malaysia, Johor: Pontian, ~5 km into track from Kampung Jasa Sapakat	1 Aug 1995
	site	
8	Malaysia, Johor: Sri Bunian, Kampung Pt Tekong, irrigation ditch	1 Aug 1995
9	Malaysia, Johor: Pontian, ~3–4 km towards Kukup (Pontian Kechil),	1 Aug 1995
	after Sri Bunian, opposite sluice gate	
10	Malaysia, Johor: Ayer Hitam, remnant peat swamp forest ~500 m after	1 Dec 1995
	turnoff at km 219 Seremban/km 97 Johor Bahru, along old road from	
	Ayer Hitam to Yong Peng	
11	Malaysia, Johor: Pontian, blackwater ditch at ~3–4 km towards Kukup	1 Dec 1995
12	Malaysia, Johor: Pontian, Kampung Jasa Sapakat, Sri Bunian	1 Dec 1995
13	Malaysia, Johor: Pontian, Sri Bunian, Kampung Jasa Sapakat,	1 Jul 1998
	blackwater ditch running through oil palm plantation	
14	Malaysia, Johor: Ayer Hitam, Hutan Simpang Ayer Hitam Utara	1 Oct 2005
	(Permanent Forest Reserve); peat swamp forest, access via track	
	opposite Kg Parit Jon, ~40 km North of Ayer Hitam town	
15	Malaysia, Johor: Ayer Hitam, Hutan Simpang Ayer Hitam Utara	1 Mar 2006
	(Permanent Forest Reserve); peat swamp forest, access via track	
	opposite Kg. Parit Jon, ~40 km North of Ayer Hitam town	
16	Malaysia, Johor: Canal system (Parit) along Pontian Kechil-Pekan	1 Oct 2009
	Nanas road, km 183 Melaka/km 50 Johor Bahru; right turnoff road to	
	Pontian, oil palm estate at Kampung Jasa Sepakat	

(b) Literature consulted

No	Species recorded	Literature consulted
	Banka	
1	Encheloclarias	Ng PKL and Lim KKP. 1993. The Southeast Asian catfish genus
	tapeinopterus (Bleeker)	Encheloclarias (Teleostei: Clariidae), with descriptions of four
		new species. Ichthyol Explor Fresh 4: 21-37
2	Chaca bankanensis	Tan HH and Ng HH. 2000. The catfishes (Teleostei:
	(Bleeker)	Siluriformes) of central Sumatra. J Nat Hist 34: 267-303.
3	Ompok leiacanthus	Tan THT and Ng PKL. 1996. Catfishes of the Ompok
	(Bleeker)	leiacanthus (Bleeker, 1853) species group (Teleostei: Siluridae)
		from southeast Asia, with description of a new species. Raffles B

No	Species recorded	Literature consulted
		Zool 44 : 531–42.
	Batang Hari-Indragiri	
1	Barbucca diabolica	Tan HH and Kottelat M. 2009. The fishes of the Batang Hari
	(Roberts)	drainage, Sumatra, with description of six new specis. <i>Ichthyol</i>
2	Encheloclarias kelioides	Tan HH and Kottelat M. 2009. The fishes of the Batang Hari
-	(Ng and Lim)	drainage, Sumatra, with description of six new specis. <i>Ichthyol</i>
		Explor Fresh 20 : 13–69.
3	Sundadanio goblinus	Conway KW, Kottelat M, and Tan HH. 2011. Review of the
	(Conway <i>et al</i> .)	southeast Asian miniature cyprinid genus <i>Sundadanio</i>
		(Ostariophysi: Cyprinidae) with descriptions of seven new species from Indonesia and Malaysia. <i>Ichthyol Explor Frash</i> 22 :
		251–88.
	Central Kalimantan	
1	Betta strohi (Schaller and	Tan HH and Ng PKL. 2005. The fighting fishes (Teleostei:
	Kottelat)	Osphronemidae: Genus Betta) of Singapore, Malaysia and Brunei, <i>Rafflas B Zool</i> 13 : 43–99
2	Boraras brigittae (Vogt)	Conway KW and Kottelat M. 2011. <i>Boraras naevus</i> , a new
		species of miniature and sexually dichromatic freshwater fish
		from peninsular Thailand (Ostariophysi: Cyprinidae). Zootaxa
2	Donanas monah (Vottolot)	3002: 45–51.
3	<i>Borarus meran</i> (Koueiat)	Indochinese species of Rasbora, with description of four new
		species (Pisces: Cyprinidae). <i>Ichthyol Explor Fresh</i> 2: 177–91.
4	Hyalobagrus flavus (Ng and	Ng HH and Kottelat M. 1998. Hyalobagrus, a new genus of
	Kottelat)	miniature bagrid catfish from southeast Asia (Teleostei:
		Siluriformes). Ichthyol Explor Fresh 9: 335–46.
	East Peninsular Malaysia	
1	Neohomaloptera johorensis	Ng HH and Tan HH. 1999. The fishes of the Endau drainage,
	(Herre)	Peninsular Malaysia with descriptions of two new species of outfishes (Teleostei: Alweidae, Regridee), Zeel Stud 38 : 350, 66
2	Systomus lineatus	Kottelat M. 1996. The identity of <i>Puntius eugrammus</i> and
-	(Duncker)	diagnoses of two new species of striped barbs (Teleostei:
		Cyprinidae) from Southeast Asia. Raffles B Zool 44: 301-16.
	Kapuas-Sambas	
1	Barbucca diabolica	Kottelat M and Widjanarti E. 2005. The fishes of Danau
	(Roberts)	Sentarum National park and the Kapuas Lakes Area, Kalimantan
	Patta ninquis (Ton and	Barat, Indonesia. Raffles B Zool 13: 13–173.
Z	Kottelat)	(Teleostei: Osphronemidae) from the Kapuas Basin Kalimantan
	110(10101)	Barat, Borneo. <i>Raffles B Zool</i> 46 : 41–51.
3	Chaca bankanensis	Kottelat M and Widjanarti E. 2005. The fishes of Danau
	(Bleeker)	Sentarum National park and the Kapuas Lakes Area, Kalimantan
	Channa nlauronhthalma	Barat, Indonesia. <i>Kaffles B Lool</i> 13 : 13–173. Kottelat M and Widianarti E. 2005. The fishes of Danau
4	(Bleeker)	Sentarum National park and the Kapuas Lakes Area. Kalimantan
	<pre></pre>	Barat, Indonesia. <i>Raffles B Zool</i> 13 : 13–173.
5	Cyclocheilichthys	Kottelat M and Widjanarti E. 2005. The fishes of Danau
	<i>janthochir</i> (Bleeker)	Sentarum National park and the Kapuas Lakes Area, Kalimantan

No	Species recorded	Literature consulted
		Barat, Indonesia. Raffles B Zool 13: 13-173.
6	Encheloclarias baculum	Ng PKL and Lim KKP. 1993. The Southeast Asian catfish genus
	(Ng and Lim)	Encheloclarias (Teleostei: Clariidae), with descriptions of four
		new species. Ichthyol Explor Fresh 4: 21–37
7	Hemibagrus olyroides	Roberts TR. 1989. The freshwater fishes of Western Borneo
	(Roberts)	(Kalimantan Barat, Indonesia). <i>Mem Calif Acad Sci</i> 14: 1–210.
8	Hyalobagrus leiacanthus	Ng HH and Kottelat M. 1998. <i>Hyalobagrus</i> , a new genus of
	(Ng and Kottelat)	maniature bagrid catfish from Southeast Asia (Teleostei:
	· · · · ·	Siluriformes). Ichthyol Explor Fresh 9: 335–46.
9	Leptobarbus melanopterus	Kottelat M and Widjanarti E. 2005. The fishes of Danau
	(Weber and de Beaufort)	Sentarum National park and the Kapuas Lakes Area, Kalimantan
10		Barat, Indonesia. <i>Raffles B Zool</i> 13 : 13–173.
10	(Kottolat and Lim)	Kottelat M. 1991. Notes on the taxonomy and distribution of
	(Rottelat and Lini)	some western indonesian neshwater fishes, with diagnoses of a new genus and six new species (Pisces: Cyprinidae Belontiidae
		and Chaudhuriidae) Ichthyol Explor Fresh 2: 273–87
11	Parosphromenus auindecim	Diagnoses of six new species of <i>Parosphromenus</i> (Teleostei:
	(Kottelat and Ng)	Osphronemidae) from Kottelat M and Ng PKL. 2005. Malay
	(Peninsula and Borneo, with notes on other species. <i>Raffles B</i>
		Zool 13 : 101–13.
12	Silurichthys sanguineus	Roberts TR. 1989. The freshwater fishes of Western Borneo
	(Roberts)	(Kalimantan Barat, Indonesia). Mem Calif Acad Sci 14: 1-210.
13	Sphaerichthys vaillantii	Kottelat M and Widjanarti E. 2005. The fishes of Danau
	(Pellegrin)	Sentarum National park and the Kapuas Lakes Area, Kalimantan
		Barat, Indonesia. Raffles B Zool 13: 13–173.
14	Sundadanio rubellus	Conway KW, Kottelat M., and Tan HH. 2011. Review of the
	(Conway <i>et al</i> .)	Southeast Asian miniature cyprinid genus Sundadanio
		(Ostariophysi: Cyprinidae) with descriptions of seven new
		species from Indonesia and Malaysia. <i>Ichthyol Explor Fresh 22</i> :
15	Systemus lineatus	151-200. Kottalat M 1006 The identity of <i>Puntius augrammus</i> and
15	(Duncker)	diagnoses of two new species of strined barbs (Teleostei)
	(Duneker)	Cyprinidae) from Southeast Asia <i>Raffles B Zool</i> 44 : 301–16
		Cyprinidae) from Southeast Fisha. Rayjees D 2007 11. 501 10.
	Rajang	
1	Encheloclarias baculum	Ng HH and Tan HH. 2000. A new species of Encheloclarias
	(Ng and Lim)	from Sumatra. J Fish Biol 57: 536–39.
	Sadong	
1	Encheloclarias prolatus	Ng HH and Tan HH. 2000. A new species of Encheloclarias
	(Ng and Lim)	from Sumatra. J Fish Biol 57: 536–39.
	West Johor	
1	Hyalobagrus ornatus	Ng HH and Kottelat M. 1998. <i>Hyalobagrus</i> , a new genus of
	(Duncker)	maniature bagrid catfish from Southeast Asia (Teleostei:
		Siluriformes). Ichthyol Explor Fresh 9: 335-46.
2	Systomus lineatus	Kottelat M. 1996. The identity of Puntius eugrammus and
	(Duncker)	diagnoses of two new species of striped barbs (Teleostei:
		Cyprinidae) from Southeast Asia. Raffles B Zool 44: 301-16.

	•	2000			2010			2050	
		Degrade			Degrade				
		d	Urba		d	Urba	Forest	Forest	Forest
Basins	Forest	peatland	n	Forest	peatland	n	(CONSERV)	(BAU)	(CONVERT)
Ambat	29.59	209.69	0.00	20.03	219.07	0.00	10.14	4.20	0.00
Banka	266.61	229.65	1.26	181.25	315.01	1.26	91.79	38.71	0.02
Batang Hari-	8230.36	9271.57	2.75	5310.48	12189.80	4.03	2689.35	920.43	0.71
Indragiri									
Central Kalimantan	17773.3	16389.66	5.53	14993.2	19134.52	12.03	7592.95	7592.95	2.01
	1			8					
East Peninsular	1954.18	1243.62	1.36	1445.62	1751.53	2.07	732.10	432.93	0.19
Malaysia									
Kapuas-Sambas	8274.68	1979.66	0.00	6711.48	3529.52	0.00	3398.85	2904.60	0.90
North Selangor	762.33	880.61	53.57	797.68	835.20	63.76	797.68	797.68	0.11
Rajang	1988.82	840.86	14.91	649.95	2170.46	23.69	329.15	7.41	0.09
Sadong	969.33	555.79	10.80	104.35	1414.49	17.09	52.85	0.01	0.01
West Johor	66.27	1634.29	0.00	48.16	1652.59	0.00	24.39	13.43	0.01

WebTable 2. Summary of PSF land-cover statistics

Notes: We present the area (km^2) of each terrestrial land-cover type (ie forest, degraded peatland, urban) in 2000 and 2010, as calculated by Miettinen *et al.* (2011). Within each basin, for peatland areas with no associated remote-sensing data (mean percentage of peatland area not mapped: 8.3%), the proportion of land-cover types is assumed to be the same as in areas that were successfully mapped. Finally, we project forest area (km^2) in 2050, following the three land-use change scenarios (CONSERV, BAU, and CONVERT) based on deforestation rates in 2000 and 2010.

									A_{new}	
Basins	$(\pm SD)$	$\sigma_{degraded}$	σ_{urban}	$p_{degraded}$	p_{urban}	Sorig	Aorig	CONSERV	BAU	CONVERT
Ambat				1.0000	0	5	20.03	10.14	4.20	0.00
Banka				0.9960	0.0040	13	181.25	91.79	38.71	0.02
Batang Hari-Indragiri				0.9997	0.0003	26	5310.48	2689.35	920.43	0.71
Central Kalimantan				0.9994	0.0006	45	14993.28	7592.95	7592.95	2.01
East Peninsular Malaysia	0.333	0.667	1	0.9988	0.0012	9	1445.62	732.10	432.93	0.19
Kapuas-Sambas	(± 0.087)	0.007	1	1.0000	0	34	6711.48	3398.85	2904.60	0.90
North Selangor				0.9291	0.0709	8	797.68	797.68	797.68	0.11
Rajang				0.9892	0.0108	7	649.95	329.15	7.41	0.09
Sadong				0.9881	0.0119	10	104.35	52.85	0.01	0.01
West Johor				1.0000	0	9	48.16	24.39	13.43	0.01

WebTable 3. Summary of parameter values applied in the MCSAM to project extinctions

Notes: γ (± SD): exponent of MCSAM derived from meta-analysis of fish species–basin area relationships across four tropical forest regions (± standard deviation used in Monte Carlo simulations); $\sigma_{degraded}$ and σ_{urban} : sensitivity of fish species toward degraded peatland and urban land cover, respectively; $p_{degraded}$ and p_{urban} : proportion of converted area attributed to degraded peatland and urban land cover, respectively; S_{orig} : original fish species richness (in 2010); A_{orig} : original PSF area (in 2010); A_{new} : PSF area in 2050 following the three land-use change scenarios (CONSERV, BAU, and CONVERT).

		Mean probability of extinction			PSF river basins									
		-	$(\pm SE)$											
Rank	Species	CONSERV	BAU	CONVERT	AB	BK	BT	CK	EP	KP	NS	RJ	SD	WJ
1	Encheloclarias prolatus (Ng and	0.2564	0.9861	0.9862	0	0	0	0	0	0	0	0	1	0
	Lim)	(± 0.0005)	(± 0.0001)	(± 0.0001)										
2	Betta brownorum (Witte and	0.0142	0.6527	0.7333	0	0	0	0	0	0	0	1	1	0
	Schmidt)	(± 0.0001)	(± 0.0005)	(± 0.0004)										
3	Sundadanio goblinus (Conway	0.3023	0.6249	0.9936	0	0	1	0	0	0	0	0	0	0
	et al.)	(± 0.0005)	(± 0.0005)	(± 0.0001)										
4	Sundadanio margarition	0.0117	0.5866	0.7851	0	0	0	0	0	0	0	1	1	0
	(Conway <i>et al</i> .)	(± 0.0001)	(± 0.0005)	(± 0.0004)										
5	Betta ibanorum (Tan and Ng)	0.0271	0.5091	0.5086	0	0	0	0	0	0	0	0	1	0
		(± 0.0002)	(± 0.0005)	(± 0.0005)										
6	Betta burdigala (Kottelat and	0.2211	0.4414	0.9743	0	1	0	0	0	0	0	0	0	0
	Ng)	(± 0.0004)	(± 0.0005)	(± 0.0002)										
7	Encheloclarias tapeinopterus	0.2218	0.4411	0.9742	0	1	0	0	0	0	0	0	0	0
	(Bleeker)	(± 0.0004)	(± 0.0005)	(± 0.0002)										
8	Paedocypris progenetica	0.1635	0.3918	0.9624	0	0	1	0	0	0	0	0	0	0
	(Kottelat <i>et al</i> .)	(± 0.0004)	(± 0.0004)	(± 0.0002)										
9	Parosphromenus allani (Brown)	0.006	0.3706	0.6265	0	0	0	0	0	0	0	1	1	0
		(± 0.0001)	(± 0.0005)	(± 0.0005)										
10	Hyalobagrus ornatus (Duncker)	0.1969	0.3548	0.9688	0	0	0	0	0	0	0	0	0	1
		(± 0.0004)	(± 0.0004)	(± 0.0002)										
11	Ompok supernus (Ng)	0.3256	0.3257	0.9967	0	0	0	1	0	0	0	0	0	0
		(± 0.0005)	(± 0.0004)	(± 0.0001)										
12	Rasbora patrickyapi (Tan)	0.3253	0.3256	0.9967	0	0	0	1	0	0	0	0	0	0
		(± 0.0005)	(± 0.0004)	(± 0.0001)										
13	Betta strohi (Schaller and	0.3246	0.3252	0.9968	0	0	0	1	0	0	0	0	0	0
	Kottelat)	(± 0.0005)	(± 0.0004)	(± 0.0001)										
14	Encheloclarias sp. "Kal Teng"	0.3255	0.3249	0.9969	0	0	0	1	0	0	0	0	0	0
		(± 0.0005)	(± 0.0004)	(± 0.0001)										

WebTable 4. Probability of global extinction and distribution of 102 fish species

		Mean probability of extinction				PSF river basins								
			$(\pm SE)$											
15	Betta uberis (Tan and Ng)	0.3251	0.3243	0.9968	0	0	0	1	0	0	0	0	0	0
		(± 0.0004)	(± 0.0004)	(± 0.0001)										
16	Eirmotus furvus (Tan and	0.1116	0.2823	0.9143	0	0	1	0	0	0	0	0	0	0
	Kottelat)	(± 0.0003)	(± 0.0004)	(± 0.0003)										
17	Betta renata (Tan)	0.1118	0.2807	0.9138	0	0	1	0	0	0	0	0	0	0
		(± 0.0003)	(± 0.0005)	(± 0.0003)										
18	Ompok leiacanthus (Bleeker)	0.067	0.2755	0.9682	0	1	1	0	0	0	0	0	0	0
		(± 0.0003)	(± 0.0004)	(± 0.0002)										
19	Paedocypris micromegethes	0.0025	0.2711	0.4579	0	0	0	0	0	0	0	1	1	0
	(Kottelat <i>et al</i> .)	(± 0.0001)	(± 0.0005)	(± 0.0005)										
20	Encheloclarias kelioides (Ng	0.0723	0.2532	0.9846	0	0	1	0	1	0	0	0	0	0
	and Lim)	(± 0.0002)	(± 0.0004)	(± 0.0001)										
21	Paedocypris sp. "Banka"	0.1146	0.2498	0.8992	0	1	0	0	0	0	0	0	0	0
		(± 0.0003)	(± 0.0004)	(± 0.0003)										
22	Sundadanio gargula (Conway et	0.1145	0.2497	0.8986	0	1	0	0	0	0	0	0	0	0
	al.)	(± 0.0003)	(± 0.0004)	(± 0.0003)										
23	Paedocypris sp. "Pahang"	0.1217 (±	0.2226 (±	0.9669 (±	0	0	0	0	1	0	0	0	0	0
		0.0003)	0.0004)	0.0002)										
24	Betta simorum (Tan and Ng)	0.0844	0.2191	0.8598	0	0	1	0	0	0	0	0	0	0
		(± 0.0003)	(± 0.0004)	(± 0.0004)										
25	Betta mandor (Tan and Ng)	0.1686	0.2049	0.9307	0	0	0	0	0	1	0	0	0	0
		(± 0.0004)	(± 0.0004)	(± 0.0003)										
26	Paedocypris sp. "Kapuas"	0.1693	0.2049	0.9301	0	0	0	0	0	1	0	0	0	0
		(± 0.0004)	(± 0.0004)	(± 0.0003)										
27	Betta rutilans (Witte and	0.1693	0.2048	0.9306	0	0	0	0	0	1	0	0	0	0
	Kottelat)	(± 0.0004)	(± 0.0004)	(± 0.0002)										
28	Parosphromenus quindecim	0.1693	0.2045	0.9306	0	0	0	0	0	1	0	0	0	0
	(Kottelat and Ng)	(± 0.0004)	(± 0.0004)	(± 0.0002)										
29	Betta midas (Tan)	0.1697	0.2045	0.9299	0	0	0	0	0	1	0	0	0	0
		(± 0.0004)	(± 0.0005)	(± 0.0002)										

		<i>Mean probability of extinction</i>			PSF river basins									
		-	$(\pm SE)$											
30	Leptobarbus melanopterus	0.1689	0.2045	0.9301	0	0	0	0	0	1	0	0	0	0
	(Weber and de Beaufort)	(± 0.0004)	(± 0.0004)	(± 0.0003)										
31	Parosphromenus anjunganensis	0.1691	0.2044	0.9302	0	0	0	0	0	1	0	0	0	0
	(Kottelat)	(± 0.0004)	(± 0.0004)	(± 0.0002)										
32	Sphaerichthys vaillanti	0.1695	0.2043	0.9301	0	0	0	0	0	1	0	0	0	0
	(Pellegrin)	(± 0.0004)	(± 0.0004)	(± 0.0003)										
33	Betta pinguis (Tan and Kottelat)	0.1699	0.2043	0.9298	0	0	0	0	0	1	0	0	0	0
		(± 0.0004)	(± 0.0004)	(± 0.0002)										
34	Osteochilus partilineatus	0.1689	0.2042	0.9301	0	0	0	0	0	1	0	0	0	0
	(Kottelat)	(± 0.0004)	(± 0.0004)	(± 0.0003)										
35	Sundadanio rubellus (Conway et	0.1684	0.2037	0.9302	0	0	0	0	0	1	0	0	0	0
	<i>al.</i>)	(± 0.0004)	(± 0.0004)	(± 0.0003)										
36	Silurichthys sanguineus	0.1691	0.2034	0.9306	0	0	0	0	0	1	0	0	0	0
	(Roberts)	(± 0.0004)	(± 0.0004)	(± 0.0002)										
37	Hyalobagrus flavus (Ng and	0.0986	0.2028	0.9903	0	0	1	1	0	0	0	0	0	0
	Kottelat)	(± 0.0003)	(± 0.0004)	(± 0.0001)										
38	Betta tomi (Ng and Kottelat)	0.1022	0.1898	0.8016	1	0	0	0	0	0	0	0	0	0
		(± 0.0003)	(± 0.0004)	(± 0.0004)										
39	Pectenocypris micromysticetus	0.0685	0.1794	0.8049	0	0	1	0	0	0	0	0	0	0
	(Tan and Kottelat)	(± 0.0002)	(± 0.0004)	(± 0.0004)										
40	Parosphromenus linkei	0.1783	0.1779	0.9807	0	0	0	1	0	0	0	0	0	0
	(Kottelat)	(± 0.0004)	(± 0.0004)	(± 0.0001)										
41	Pseudomystus funebris (Ng)	0.1783	0.1778	0.9805	0	0	0	1	0	0	0	0	0	0
		(± 0.0004)	(± 0.0004)	(± 0.0001)										
42	Parosphromenus opallios	0.1778	0.1778	0.9807	0	0	0	1	0	0	0	0	0	0
	(Kottelat and Ng)	(± 0.0004)	(± 0.0004)	(± 0.0001)										
43	Encheloclarias baculum (Ng and	0.0113	0.1741	0.8928	0	0	0	0	0	1	0	1	1	0
	Lim)	(± 0.0001)	(± 0.0004)	(± 0.0003)										
44	Parosphromenus alfredi	0.081	0.1525	0.738	1	0	0	0	0	0	0	0	0	0
	(Kottelat and Ng)	(± 0.0003)	(± 0.0003)	(± 0.0004)										
45	Pseudomystus heokhuii (Lim and	0.0571	0.1521	$0.75\overline{38}$	0	0	1	0	0	0	0	0	0	0

		<i>Mean probability of extinction</i>			PSF river basins									
			$(\pm SE)$											
	Ng)	(± 0.0002)	(± 0.0004)	(± 0.0004)										
46	Systomus foerschi (Kottelat)	0.1216	0.1222	0.9513	0	0	0	1	0	0	0	0	0	0
		(± 0.0003)	(± 0.0003)	(± 0.0002)										
47	Nanobagrus immaculatus (Ng)	0.1218	0.1221	0.9508	0	0	0	1	0	0	0	0	0	0
		(± 0.0003)	(± 0.0003)	(± 0.0002)										
48	Parakysis notialis (Ng and	0.1222	0.1217	0.9507	0	0	0	1	0	0	0	0	0	0
	Kottelat)	(± 0.0003)	(± 0.0003)	(± 0.0002)										
49	Sundadanio echinus (Conway et	0.0879	0.1079	0.7754	0	0	0	0	0	1	0	0	0	0
	<i>al.</i>)	(± 0.0003)	(± 0.0003)	(± 0.0004)										
50	Betta schalleri (Kottelat and Ng)	0.0468	0.1066	0.6623	0	1	0	0	0	0	0	0	0	0
		(± 0.0002)	(± 0.0003)	(± 0.0005)										
51	Parosphromenus tweediei	0.0507	0.0995	0.7291	0	0	0	0	0	0	0	0	0	1
	(Kottelat and Ng)	(± 0.0002)	(± 0.0003)	(± 0.0005)										
52	Betta persephone (Schaller)	0.0511	0.0992	0.7291	0	0	0	0	0	0	0	0	0	1
		(± 0.0002)	(± 0.0003)	(± 0.0004)										
53	Pectenocypris korthusae	0.093	0.0927	0.9134	0	0	0	1	0	0	0	0	0	0
	(Kottelat)	(± 0.0003)	(± 0.0003)	(± 0.0003)										
54	Betta chloropharynx (Kottelat	0.0388	0.0893	0.5991	0	1	0	0	0	0	0	0	0	0
	and Ng)	(± 0.0002)	(± 0.0003)	(± 0.0004)										
55	Parachela cyanea (Kottelat)	0.0277	0.0801	0.8952	0	0	1	0	0	1	0	0	0	0
		(± 0.0001)	(± 0.0003)	(± 0.0003)										
56	Channa pleurophthalma	0.0277	0.0798	0.8957	0	0	1	0	0	1	0	0	0	0
	(Bleeker)	(± 0.0002)	(± 0.0003)	(± 0.0003)										
57	Parosphromenus filamentosus	0.0747	0.0751	0.8714	0	0	0	1	0	0	0	0	0	0
	(Vierke)	(± 0.0003)	(± 0.0002)	(± 0.0003)										
58	Paedocypris carbunculus (Britz	0.075	0.075	0.8714	0	0	0	1	0	0	0	0	0	0
	and Kottelat)	(± 0.0003)	(± 0.0003)	(± 0.0004)										
59	Parosphromenus sumatranus	0.0268	0.0726	0.495	0	0	1	0	0	0	0	0	0	0
	(Klausewitz)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
60	Hyalobagrus leiacanthus (Ng	0.0547	0.0667	0.9277	0	0	0	1	0	1	0	0	0	0
	and Kottelat)	(± 0.0002)	(± 0.0002)	(± 0.0002)										

		<i>Mean probability of extinction</i>				n PSF river basins								
			$(\pm SE)$											
61	Boraras brigittae (Vogt)	0.0548	0.0665	0.9275	0	0	0	1	0	1	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0003)										
62	Pseudeutropius moolenburghae	0.0221	0.0581	0.8023	0	0	1	1	0	0	0	0	0	0
	(Weber and de Beaufort)	(± 0.0002)	(± 0.0002)	(± 0.0004)										
63	Systomus gemellus (Kottelat)	0.0119	0.0563	0.9346	0	1	1	1	0	0	0	0	0	0
		(± 0.0001)	(± 0.0002)	(± 0.0003)										
64	Hemirhamphodon kapuasensis	0.045	0.0553	0.5449	0	0	0	0	0	1	0	0	0	0
	(Collette)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
65	Parosphromenus ornaticauda	0.0448	0.0548	0.5463	0	0	0	0	0	1	0	0	0	0
	(Kottelat)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
66	Sphaerichthys acrostoma	0.0543	0.0544	0.7883	0	0	0	1	0	0	0	0	0	0
	(Vierke)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
67	Betta foerschi (Vierke)	0.0543	0.054	0.7888	0	0	0	1	0	0	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0005)										
68	Pangio pulla (Kottelat and Lim)	0.0478	0.0479	0.7494	0	0	0	1	0	0	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0005)										
69	Osteochilus pentalineatus	0.0477	0.0476	0.7489	0	0	0	1	0	0	0	0	0	0
	(Kottelat)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
70	Brevibora sp. "Kal Teng"	0.0478	0.0472	0.7496	0	0	0	1	0	0	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0004)										
71	Betta waseri (Krummenacher)	0.0227	0.0426	0.6828	0	0	0	0	1	0	0	0	0	0
		(± 0.0001)	(± 0.0002)	(± 0.0004)										
72	Kottelatlimia hipporhynchos	0.0423	0.0423	0.7127	0	0	0	1	0	0	0	0	0	0
	(Kottelat and Tan)	(± 0.0002)	(± 0.0002)	(± 0.0004)										
73	Sundadanio retiarius (Conway	0.0381	0.0382	0.6789	0	0	0	1	0	0	0	0	0	0
	et al.)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
74	Cyclocheilichthys janthochir	0.0302	0.0367	0.9126	0	0	0	1	0	1	0	0	0	0
	(Bleeker)	(± 0.0002)	(± 0.0002)	(± 0.0003)										
75	Betta pulchra (Tan and Tan)	0.0185	0.0364	0.3669	0	0	0	0	0	0	0	0	0	1
		(± 0.0001)	(± 0.0002)	(± 0.0005)										

		Mean probability of extinction			PSF river basins									
		-	$(\pm SE)$											
76	Hemibagrus olyroides (Roberts)	0.0302	0.0359	0.9122	0	0	0	1	0	1	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0003)										
77	Boraras merah (Kottelat)	0.0285	0.0351	0.7726	0	0	0	1	0	1	0	0	0	0
		(± 0.0002)	(± 0.0002)	(± 0.0004)										
78	Hemirhamphodon	0.0319	0.0319	0.6161	0	0	0	1	0	0	0	0	0	0
	chrysopunctatus (Brembach)	(± 0.0002)	(± 0.0002)	(± 0.0005)										
79	Parosphromenus parvulus	0.0296	0.0292	0.5901	0	0	0	1	0	0	0	0	0	0
	(Vierke)	(± 0.0002)	(± 0.0002)	(± 0.0004)										
80	Betta tussyae (Schaller)	0.0138	0.0263	0.5149	0	0	0	0	1	0	0	0	0	0
		(± 0.0001)	(± 0.0002)	(± 0.0005)										
81	Parosphromenus nagyi	0.0129	0.025	0.4947	0	0	0	0	1	0	0	0	0	0
	(Schaller)	(± 0.0001)	(± 0.0002)	(± 0.0006)										
82	Sphaerichthys selatanensis	0.024	0.0241	0.519	0	0	0	1	0	0	0	0	0	0
	(Vierke)	(± 0.0002)	(± 0.0001)	(± 0.0006)										
83	Betta anabatoides (Bleeker)	0.0227	0.0225	0.4985	0	0	0	1	0	0	0	0	0	0
		(± 0.0001)	(± 0.0001)	(± 0.0005)										
84	Rasbora kalbarensis (Kottelat)	0.0075	0.0215	0.5251	0	0	1	0	0	1	0	0	0	0
		(± 0.0001)	(± 0.0001)	(± 0.0005)										
85	Luciocephalus aura (Tan and	0.0096	0.0197	0.6138	0	0	1	1	0	0	0	0	0	0
	Ng)	(± 0.0001)	(± 0.0001)	(± 0.0005)										
86	Hemirhamphodon tengah	0.0191	0.0193	0.4457	0	0	0	1	0	0	0	0	0	0
	(Collette)	(± 0.0001)	(± 0.0001)	(± 0.0005)										
87	Ompok weberi (Hardenberg)	0.0127	0.0153	0.8114	0	0	0	1	0	1	0	0	0	0
		(± 0.0001)	(± 0.0001)	(± 0.0004)										
88	Barbucca diabolica (Roberts)	0.0018	0.0082	0.844	1	0	1	1	0	1	0	0	0	0
		(± 0)	(± 0.0001)	(± 0.0003)										
89	Systomus rhomboocellatus	0.0041	0.0051	0.5813	0	0	0	1	0	1	0	0	0	0
	(Koumans)	(± 0.0001)	(± 0.0001)	(± 0.0005)										
90	Kottelatlimia katik (Kottelat and	0.0001	0.0012	0.6735	0	0	1	1	0	1	0	0	1	1
	Lim)	(± 0)	(± 0)	(± 0.0005)										
91	Chaca bankanensis (Bleeker)	0.0001	0.0006	0.5847	1	1	1	1	0	1	0	0	0	0

		$Mean probability of extinction (\pm SE)$						PS	F river	· basii	ns			
		(± 0)	(± 0)	(± 0.0005)										
92	Silurichthys phaiosoma	0	0.0003	0.2685	0	1	0	1	0	1	0	1	0	0
	(Bleeker)		(± 0)	(± 0.0004)										
93	Nagaichthys filipes (Kottelat and	0	0.0003	0.5918	0	1	1	1	1	1	0	0	1	1
	Lim)		(± 0)	(± 0.0005)										
94	Systomus lineatus (Duncker)	0	0.0002	0.4562	0	0	1	1	1	1	0	0	0	1
			(± 0)	(± 0.0004)										
95	Betta livida (Ng and Kottelat)	0	0	0.603	0	0	0	0	0	0	1	0	0	0
				(± 0.0005)										
95	Encheloclarias curtisoma (Ng	0	0	0.8698	0	0	0	0	0	0	1	0	0	1
	and Lim)			(± 0.0003)										
95	Mystus bimaculatus (Volz)	0	0	0.4634	0	0	1	0	0	0	1	0	0	0
				(± 0.0005)										
95	Neohomaloptera johorensis	0	0	0.0847	0	1	1	1	1	1	1	0	1	0
	(Herre)			(± 0.0003)										
95	Osteochilus spilurus (Bleeker)	0	0	0.0323	1	1	1	1	1	1	1	1	0	1
				(± 0.0002)										
95	Paedocypris sp. "North	0	0	0.9995	0	0	0	0	0	0	1	0	0	0
	Selangor"			(± 0)										
95	Parosphromenus harveyi	0	0	0.7134	0	0	0	0	0	0	1	0	0	0
	(Brown)			(± 0.0005)										
95	Silurichthys indragiriensis	0	0	0.539	0	0	1	0	0	0	1	0	0	0
	(Volz)			(± 0.0005)										

Notes: Species are ranked by their mean extinction probability under the BAU scenario. Abbreviations for PSF river basins – AB: Ambat; BK: Banka; BT: Batang Hari-Indragiri; CK: Central Kalimantan; EP: East Peninsular Malaysia; KP: Kapuas-Sambas; NS: North Selangor; RJ: Rajang; SD: Sadong; WJ: West Johor. A value of "1" represents presence in a particular basin, while "0" represents absence. *Brevibora* sp. "Kal Teng", *Encheloclarias* sp. "Kal Teng", *Paedocypris* sp. "Kal Teng", *Paedocypris* sp. "Kal Teng", *Paedocypris* sp. "Kal Teng", *Paedocypris* sp. "Kal Teng", and their co-workers.

WebTable 5. Stenotopic PSF fish species present before and after conversion of a part of the North Selangor PSF in Peninsular Malaysia

	Before	After
Species	conversion	conversion
Osteochilus spirulus (Bleeker)	1	0
Neohomaloptera johorensis (Herre)	1	0
Mystus bimaculatus (Volz)	1	0
Silurichthys indraginensis (Volz)	1	1
Betta livida (Ng and Kottelat)	1	1
Parosphromenus harveyi (Brown)	1	0
	4.88	1 11 ((0))

Notes: Data from Beamish et al. (2003). A value of "1" represents presence, while "0" represents absence.

WebTable 6. Summary of fish species–basin area SARs and z values across major tropical forest regions

	No of	Min area	Max area		
Region	basins	(km^2)	(km^2)	Z	R^2
South America	40	108.9	5248828.5	0.32	0.52
Central America	49	108.9	109302.9	0.25	0.46
West Africa	52	800.0	3457000.0	0.30	0.80
Southeast Asia	9	6054.0	85283.0	0.46	0.68

Notes: Min Area: area of smallest basin; Max Area: area of largest basin; z: point estimate for z; R^2 : proportion of variance explained by SAR model.

WebFigure 1. Summary of species data across basins. (a) Species accumulation curves for field sampling data across basins. Filled circles: observed species richness (Mao Tau estimator); squares: estimated species richness (ICE estimator); triangles: estimated species richness (Chao2 estimator). (b) Table showing the total number of sampling sites, species from sampling data and literature, estimated species richness [using ICE and Chao2 species estimators (Colwell et al. 2004, and sampling completeness of field data (calculated as species from sampling data divided by average of ICE and Chao2 estimators).

(b)		Spp. from	Spp. from				
		sampling	secondary				Complete-
Basin	No. of sites	data	data	Total spp.	ICE	Chao2	ness
Ambat	10	5	0	5	5.4	5.0	0.96
Banka	13	10	3	13	13.0	12.3	0.79
Batang Hari-Indragiri	27	23	3	26	24.7	23.5	0.95
Central Kalimantan	32	41	4	45	44.9	43.9	0.92
East Peninsular	29	7	2	9	8.6	7.5	0.87
Malaysia							
Kapuas-Sambas	15	19	15	34	34.8	35.7	0.54
North Selangor	42	8	0	8	8.4	8.0	0.98
Rajang	5	6	1	7	6.5	6.0	0.96
Sadong	19	9	1	10	11.5	11.8	0.77
West Johor	16	7	2	9	9.9	8.4	0.76
All basins	208	91	11	102		-	-

WebFigure 2. Boxplots summarizing the sensitivity of birds, mammals, and invertebrates to different types of forest degradation that are equivalent to the "degraded peatland" land-use designation in the current study. Sensitivity is defined as the proportional reduction in species richness between a pristine site and a degraded site. Sensitivity can range from < 0 (degraded site has more species than pristine site) to 0 (species richness of pristine site equals that of degraded site) to 1 (100% of the species found in the pristine site are lost from the degraded site). Our data is derived from Sodhi *et al.* (2009), who conducted a meta-analysis of all studies that compared species richness in a pristine versus a degraded site. The bold line, box edges, and whiskers denote the median, the interquartile range, and the $1.5 \times$ interquartile range of sensitivity, respectively. The sensitivity of stenotopic PSF fish to "degraded peatland" (red line) falls within the range of values observed in other taxa. The total number of observations in each degradation category (n) is also shown.

Sensitivity of species assemblage (proportional reduction in species richness)

WebReferences

- Arrhenius O. 1920. Distribution of the species over the area. Meddelanden fran K. Vetenskapsakademiens Nobelinstitut 4: 1–6.
- Beamish FWH, Beamish RB, and Lim SL-H. 2003. Fish assemblages and habitat in a Malaysian blackwater peat swamp. *Environ Biol Fish* **68**: 1–13.
- Brook BW, Sodhi NS, and Ng PKL. 2003. Catastrophic extinctions follow deforestation in Singapore. Nature 424: 420–23.
- Brooks T and Balmford A. 1996. Atlantic forest extinctions. Nature 380: 115.
- Brooks TM, Mittermeier RA, Mittermeier CG, *et al.* 2002. Habitat loss and extinction in the hotspots of biodiversity. *Conserv Biol* **16**: 909–23.
- Brooks TM, Pimm SL, and Collar NJ. 1997. Deforestation predicts the number of threatened birds in insular Southeast Asia. *Conserv Biol* **11**: 382–94.
- Brooks TM, Pimm SL, and Oyugi JO. 1999. Time lag between deforestation and bird extinction in tropical forest fragments. *Conserv Biol* **13**: 1140–50.
- Colwell RK, Mao CX, and Chang J. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. *Ecology* **85**: 2717–27.
- Drakare S, Lennon JL, and Hillebrand H. 2006. The imprint of the geographical, evolutionary and ecological context on species-area relationships. *Ecol Lett* **9**: 215–27.
- Fitzherbert EB, Struebig MJ, Morel A., et al. 2008. How will oil palm expansion affect biodiversity? Trends Ecol Evol 23: 538-45.
- Gibson L, Lee TM, Koh LP, et al. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378-81.
- Koh LP and Ghazoul J. 2010. A matrix-calibrated species–area model for predicting biodiversity losses due to land-use change. *Conserv Biol* 24: 994–1001.
- Koh LP, Miettinen J, Liew SC, and Ghazoul J. 2011. Remotely sensed evidence of tropical peatland conversion to oil palm. *P Natl Acad Sci USA* **108**: 5127–32.
- Miettinen J, Shi C, and Liew SC. 2011. Two decades of destruction in Southeast Asia's peat swamp forests. *Front Ecol Environ*; doi: 101.890/100236.
- Pimm SL, Russell GJ, Gittleman J, and Brooks TM. 1995. The future of biodiversity. Science 269: 347-50.

Rosenzweig ML. 1995. Species diversity in space and time. Cambridge, UK: Cambridge University Press.

- Sodhi NS, Lee TM, Koh LP, and Brook BW. 2009. A meta-analysis of the impact of anthropogenic forest disturbance on Southeast Asia's biotas. *Biotropica* **41**: 103–09.
- Tan HH and Kottelat M. 2008. Revision of the cyprinid fish genus *Eirmotus*, with description of three new species from Sumatra and Borneo. *Raffles B Zool* **56**: 423–33.
- Tan HH. 2009. Rasbora patrickyapi, a new species of cypinid fish from Central Kalimantan, Borneo. Raffles B Zool 57: 505–09.
- Tedesco PA, Oberdorff T, Lasso CA, *et al.* 2005. Evidence of history in explaining diversity patterns in tropical riverine fish. *J Biogeogr* **32**: 1899–1907.

Tjørve E. 2003. Shapes and functions of species-area curves: a review of possible models. *J Biogeogr* **30**: 827–35.