
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Original Articles

Using landscape composition and configuration metrics as indicators of
woody vegetation attributes in tropical pastures

Liliana Cadavid-Floreza,1, Javier Labordea,⁎,2, Rakan A. Zahawib,3

a Red de Ecología Funcional, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa 91070, Veracruz, Mexico
bUniversity of Hawaii at Mānoa, Lyon Arboretum, 3860 Mānoa Road, Honolulu, HI 96822, United States

A R T I C L E I N F O

Keywords:
Agricultural landscapes
Isolated trees
Landscape matrix
Remote sensing
Silvopastoral systems
Woody plant species composition

A B S T R A C T

Seasonally dry tropical forests in the Neotropics are typically transformed into pasture-dominated landscapes
that represent a major threat to habitat biodiversity. Developing alternative management strategies that mini-
mize the loss of native biota in agricultural landscapes is crucial. In a fragmented landscape in Veracruz, Mexico,
we analyzed the community attributes of woody vegetation present in pastures in which different types of
arboreal elements are common. We hypothesized that different landscape patterns, distinguishable using GIS
land-cover maps, would be linked to woody plant diversity and its spatial variation. We created a detailed map of
our study area distinguishing six forest cover types. We sampled the woody vegetation within 16 circular plots
(100m radius) each centered on an isolated fig tree and that varied in the amount of arboreal cover and
proximity to remnant forest. We used a multimodel-inference approach to assess the relationship between dif-
ferent landscape metrics and woody vegetation response variables. Forest cover within each plot ranged from 3%
to 44%. A total of 1777 woody plants (density= 35.4 plants ha−1), belonging to 88 species were recorded.
Landscape composition and configuration metrics, particularly the type and amount of arboreal cover, were
strong indicators of woody plant richness and abundance, while landscape structural heterogeneity was strongly
related to floristic composition. In contrast proximity metrics were weak explanatory variables. Tall canopy
forest fragments and isolated trees explained most of the variation in richness and abundance. Results suggest
that maintaining 20–40% woody cover within pastures and maximizing the heterogeneity of arboreal elements
promotes the conservation of biodiversity in rural landscapes dedicated to livestock. Further, easily obtained
landscape metrics can be used as a tool to enhance vegetation assessment and help in the development of more
convenient management practices that seek to increase native species richness, while improving landscape
connectivity and resilience.

1. Introduction

Seasonally Dry Tropical Forests (SDTF; sensu Pennington et al.,
2009) are one of the most threatened habitat types in the world, largely
due to anthropogenic disturbance (Chazdon et al., 2011). In the Neo-
tropics less than 10% of the original extent of this forest type remains
(DRYFLOR, 2016). SDTF in Latin America has been subjected to intense
agricultural transformation for centuries, leading to the formation of
human-dominated ecosystems. Pasture is the predominant land use in
the human-modified landscapes of the Neotropics and is replacing once
extensive tropical forest (Chazdon, 2014). In spite of being pasture-
dominated, these landscapes often retain some interspersed tree cover

(hereafter ‘arboreal landscape elements’), which can play a funda-
mental role in conserving remaining biodiversity (Chazdon et al., 2011;
Guevara et al., 2005; Harvey et al., 2011), making it impossible to keep
regarding the matrix as devoid of trees.

Complex, structured matrices are essential for enhancing and
maintaining a greater number of resources and ecological processes,
increasing landscape connectivity, and are a form of insurance that
guarantees resilience in rural landscapes when they are managed
properly (Guevara et al., 2005; Harvey et al., 2006; Ricketts, 2001).
Pastures that include trees can be considered a type of agroforestry
system that is traditionally managed, with a high degree of structural
heterogeneity and a wide variety of physiognomies (Broom et al.,
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2013). Usually, scattered trees standing in the middle of crop-fields or
grazing lands form part of the agricultural and cattle ranching practices
in Mexico (Guevara et al., 2005) and Central and South America
(Harvey et al., 2011; Siqueira et al., 2017). Despite their potential value
for biodiversity conservation, there are still few rigorous descriptions of
tree cover configuration and its associated properties, particularly those
evaluating the community attributes and species composition of woody
plants in tropical and subtropical rural landscapes dominated by pas-
tures.

Traditional approaches to studying fragmented landscapes typically
assume a framework based on island biogeography and/or meta-po-
pulation theory, focusing on the fragments themselves and ignoring the
surroundings. This framework relegates the deforested matrix to that of
a uniform non-habitat that surrounds remnant patches of habitat (the
habitat matrix paradigm; sensu Manning, et al., 2006; Ricketts, 2001).
The matrix is often considered a barren artificial barrier that is even
deleterious for native forest biota, without having made any attempt to
describe its structure and composition (but see Doubrawa et al., 2013;
Guevara et al., 1998, 2005; Mendenhall et al., 2011, 2012; Johnson
et al., 2015). This patch-centric view, prevalent in many landscape
ecology studies, usually misses the finer details of the matrices and the
important role that they may have in landscape function.

Given that∼75% of the planet’s ecosystems are strongly affected by
human activity, and only 13% are in protected areas (Mendenhall et al.,
2013), developing a more complete conservation framework that in-
corporates the finer characteristics of the landscape matrix is necessary
to study biodiversity changes in human-modified landscapes. A first
step is to develop accurate and quantitative descriptors of the structural
attributes and species composition of the arboreal elements present
within active tropical pastures, which would allow us to improve
management in these landscapes. Incorporating biodiversity conserva-
tion plans in tropical agricultural landscapes is an important strategy
that should go hand in hand with the implementation of more resilient
and sustainable livestock management systems (Guevara et al., 1998;
Harvey et al., 2006).

For the design and execution of conservation plans in human-
modified landscapes, the assessment of the spatial configuration and
vegetation attributes of arboreal elements present within such habitats
should be practical and easy to carry out. Landscape patterns can be
characterized utilizing metrics such as geometry, structure, or degree of
isolation of the elements that form the landscape (McGarigal et al.,
2012). Remote sensing and spectral or textural information have been
used to predict vegetation structure (Block et al., 2016; Gallardo-Cruz
et al., 2012; Wood et al., 2012), however, in many cases the spatial
resolution employed is not fine enough to reveal all of the trees present
within pastures, and few studies perform ground verification to de-
termine the arboreal species composition. In fragmented landscapes,
factors operating at the landscape level such as remnant forest area and
land cover heterogeneity could be related to biological community at-
tributes, as found in different studies in which structural landscape
metrics have been reported as biodiversity predictor variables for dis-
tinct groups of animals and plants (Carrara et al., 2015; Collins and
Fahrig, 2017; Häger et al., 2014; Hernández-Stefanoni and Dupuy,
2008; Torras et al., 2008).

In this study, we assess whether easily obtainable metrics of land-
scape composition and configuration, degree of isolation, and hetero-
geneity – as estimated through a land cover map derived from remote
sensing data – can be used as indicators of the attributes of the woody
vegetation found in a pasture-dominated matrix in Veracruz, Mexico. In
addition, we seek to characterize their spatial variation and woody
species composition on the landscape. We focus on three goals: 1) to
determine the extent to which community attributes of woody vege-
tation found within pastures, and their spatial variation, can be ex-
plained by landscape patterns revealed by remote sensing data; 2) to
assess the relative contribution of different landscape elements as in-
dicators of high woody vegetation diversity; 3) to describe the

structural and floristic attributes of the woody vegetation present
within active pastures, and assess the magnitude of its spatial variation
under different scenarios of deforestation. Our study seeks to improve
and support the assessment of tree species communities in rural land-
scapes as part of new management and conservation strategies that can
lead to improved maintenance of ecosystem function and resilience in
these agro-silvopastoral systems.

2. Methods

2.1. Study area

The study was conducted in a fragmented landscape with a long
history of agricultural use in the tropical lowlands of the state of
Veracruz, Mexico, within the municipality of Jamapa (18°55′–19°04′N
and 96°10′–96°19′W). The area is part of the coastal plain of the
Papaloapan River Basin and ranges in elevation from 10 to 40m a.s.l.
Mean annual temperature is 24–26 °C, and mean annual rainfall is
1100–1300mm/yr (INEGI, 2009). Precipitation is strongly seasonal
with a marked rainy season from June to September (> 200mm/mo)
and a dry season from October to May (< 100mm/mo); January to
April are the driest months (< 20mm/mo) (CLIMATE-DATA ORG,
2018).

This region, once covered by extensive SDTF interspersed with
wetlands and palm groves, has been altered and maintained for dif-
ferent agricultural uses since pre-Hispanic times (Escamilla-Perez,
2013). At present, the dominant type of land use is man-made pastures
to raise cattle, which is the main agricultural activity across the entire
coastal plain of Veracruz (Fig. S.1 in Supplementary material). None-
theless, in the rural landscape of Jamapa farmers leave different ar-
boreal elements standing in pastures as a source of firewood, timber,
complementary fodder, fences, and as shade for livestock, with a no-
table density of isolated shade trees (Lazos-Ruíz et al., 2016). Some of
these arboreal elements are remnants of the original forest canopy or
sub-canopy, but many others established naturally or were planted after
the forest conversion to pasture.

The two largest remnant patches of old-growth forest with a rela-
tively continuous canopy> 15m that have been preserved by locals in
our study area are known as El Palmar and El Apompal (Fig. 1). The
former is a remnant forest patch 89.2 ha in area, dominated by the
palms Roystonea dunlapiana and Attalea butyracea. The latter is a
floodable forest patch 56.4 ha in area surrounding the Apompal Lagoon
(30 ha) and is dominated by Pachira aquatica with an abundance of R.
dunlapiana and A. butyracea palms (Escamilla-Perez, 2013). Our study
area was delimited using these two fragments of remnant forest as
centroids and by merging two circumferences with a 6 km radius cen-
tered around each remnant (total study area 20,070 ha).

2.2. Land cover map

We created a land cover map of our study area (Fig. 1) using high
resolution (1m/pixel) aerial ortho-photographs taken in 2007 and
2008, together with a digital elevation model (DEM) provided by INEGI
(2009). The latter, had a resolution of 5m/pixel and was derived from
the interpolation of LIDAR data (211 pulses/ha) by INEGI (see
Appendix C for more details). We also used geo-referenced vector maps
of the area that highlighted rivers, water bodies, roads and towns
(INEGI, 2009). All pixels with a vegetation height ≥2.5 m (i.e., dif-
ference between the terrain and surface digital models, from the DEM)
were classified as “forest cover”; remaining areas were classified as
“non-forest cover”. The raster map was converted into a vector shape-
file, from which all polygons with an area< 70m2 were merged with
the surrounding background area (to simplify polygons). The “forest
cover” category was further sub-divided into six classes based on ca-
nopy height, patch area, and the shape of each polygon. Polygons were
delimited and classified, with decisions supported by visual
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interpretation (1:2000), in ArcMap 10.2.2 (ESRI, 2014), and then
ground-truthed. A description of each land cover class is provided in
Table 1.

The degree of accuracy of our classification process was estimated
using a total of 669 selected ground verification points associated with
different land-cover types (except the water class). Data from verifica-
tion points were arranged in a confusion matrix (see Appendix C for
more details) from which the overall accuracy of our map was

estimated, together with the Cohen-Kappa index of concordance, where
values approaching 1 represent high accuracy and reliability (Cohen,
1960; Congalton et al., 1983).

2.3. Vegetation sampling

Isolated fig trees (Ficus spp.) are widespread in our study area, being
highly preferred by ranchers as a source of shade for cattle. The

Fig. 1. Land cover map of the study area in Jamapa, Veracruz, Mexico. The area was centered on the two largest old-growth remnants of SDTF in the region: El
Apompal (56.4 ha) and El Palmar (89.2 ha). The nine land-cover classes shown are described in detail in Table 1. The location of the 16 sampling units, each centered
on an isolated fig tree, are indicated by a colored circle (IT01–IT16). The color category represents one of the four land-use intensity scenarios described in Section
2.3 (scenario I black; II red; III green; and IV blue).

Table 1
Land cover classes distinguished in the entire study area in Jamapa, Veracruz, Mexico (depicted in Fig. 1), showing total area per class, patch size range (minimum
and maximum patch) per class, and percent cover of total area.

Land-cover class Tot. area (ha) Size range (ha) % tot. area Description

Tall canopy forest fragments 1597 1.3–61.1 8.0% Forest fragments > 1 ha with a closed-canopy ≥10m tall (including the two remnant forest
fragments of the next sub-class, below)

Remnant forest fragments 146 56.4 and 89.2 0.7% Old growth primary forest, with a canopy ≥15m tall. Two remnants: El Apompal and El Palmar
Forested riparian belts 701 0.16–107.4 3.5% Elongated fragments of arboreal belts associated with rivers
Short canopy forest fragments 1702 1.2–58.3 Patches of secondary forest > 1 ha, with a discontinuous or closed canopy ≥2.5m and <10m

tall
Urban orchards 138 – 0.7% Arboreal patches within settlements
Small wooded patches 631 0.15–1.0 3.1% Scattered tree clusters with canopy height ≥2.5 m and area ≥0.15 but ≤1 ha, that could be

arranged as shelterbelts or living fences
Isolated trees 716 0.001–0.15 3.6% Individual remnant or planted trees (area≤ 0.15 ha) scattered within pastures or crop-fields
Open areas (with no woody

cover)
14,318 – 71.3% Active pastures, crop fields, human infrastructure, or denuded sites (e.g. roads, houses, bare

ground, etc.)
Water 267 – 1.3% Water; including rivers, ponds, and reservoirs
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strangler fig F. cotinifolia is typical of the canopy of the original SDTF
and is the most common species, representing 89% of 183 fig trees
censused within pastures of our study area. We selected sixteen isolated
trees of this species as focal points for sampling the woody vegetation,
choosing individual trees that were relatively large (> 15m in height)
and therefore likely remnants of the original forest canopy. For each
sampling unit, a circular plot with a 100m radius (3.1 ha) was estab-
lished, centered on one of the F. cotinifolia trees selected. In addition to
belonging to this species and being also a relatively large tree, selection
of a focal Isolated Tree (IT) was based on two additional criteria: 1) the
IT had to be located at different distances from any of the two large
remnant old-growth SDTF, and 2) the amount of surrounding forest
cover quantified (100m radius) had to differ in order to have an ample

gradient among sampling units. Focal plot separation ranged from 275
to 11,363m.

The 16 plots sampled were grouped into four contrasting habitat
scenarios (n=4 plots per scenario; Fig. 2). The four land use intensity
scenarios were: I) minimal forest or arboreal cover (< 6%); II) scant
forest cover (6–15%); III) intermediate forest cover (15–37%); and IV)
abundant forest cover (30–45%). The latter category had its central fig
located relatively close (i.e., < 150m) to one of the two large remnant
fragments, whereas the remaining three scenario plots had their re-
spective plot centers at least 300m away from either of the two rem-
nant fragments.

All woody plants with a diameter at breast height (dbh) ≥10 cm
were recorded within the entire sampling unit (3.1 ha); smaller woody

Fig. 2. Spatial structure of each of the 16 sampling units (circular plot= 3.1 ha) showing open areas and the forest cover classes (see Table 1) present within each
plot. Each row corresponds to one of the four land use intensity scenarios arranged from the simplest, with highest disturbance intensity (scenario I; top row) to the
most complex one, with lowest disturbance intensity (IV; bottom row).
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plants with a dbh≥ 5 cm were recorded in a nested sub-plot with a
50m radius of each focal IT (0.8 ha). Data of the 100m radius plot and
its respective 50m radius sub-plot were pooled without duplicating
species counts per site. For each plant censused, we determined species
and local name, and recorded dbh, distance and orientation (azimuth)
with respect to their focal IT. Nomenclature follows Tropicos.org
(2018). Specimens that could not be identified to the species level were
treated as morpho-species in the analyses. At the time of vegetation
sampling, all pastures were being actively grazed and subject to regular
ranching practices of the area (i.e., clearing, use of chemical herbi-
cides).

2.4. Data analysis

In order to characterize the landscape, we estimated different
landscape metrics using ArcMap 10.2.2 (ESRI, 2014) and FRAGSTATS
4.0 (McGarigal et al., 2012) from our land cover map. To assess the
degree of isolation of each of the 16 sampling plots at the landscape
level, we estimated the nearest distance between each focal IT and each
of three forest cover classes: old-growth remnant (D_remn), riparian
forest belt (D_rip), and forest or arboreal fragment> 1 ha (D_fragment).
To analyze landscape attributes within each sampled unit (i.e., plot-
level variables), a circular area with a 100m radius centered on each
focal IT was plotted in ArcMap. Within this area, the following com-
position metrics were estimated: percentage of total forest cover
(FORCOV), mean area of forested patches (i.e., polygons) weighted by
area (AREA_AM), and percent cover by forest type or class. Config-
uration metrics included: total length of all forest edges within the
circular plot (ED); and patch density (NP/ha), defined as the number of
forested patches standardized by the area of each plot. Landscape
heterogeneity was estimated with the Shannon diversity index (SHDI)
taking into account the proportion of the sampling unit occupied by
each patch type or forest cover class. See McGarigal et al. (2012) for a
detailed description of each metric (see metric values per sampling unit
in Table A.1 in Appendices). We selected metrics that are easiest to
obtain and interpret, as well as those that have been persistently found
to be related to plant species richness (Luoto, 2000), or reported as
ecologically meaningful in fragmentation studies (Rutledge, 2003).

For each species recorded, an overall importance value index (IVI)
was estimated using the formula and procedures described by Curtis
and McIntosh (1951), and taking into account relative values of
abundance, basal area, and frequency within the 16 plots sampled.
Rank-abundance curves for each of the four scenarios were plotted.
Similarity in species composition among scenarios was estimated using
a Sørensen quantitative index (Magurran, 2004), and ANOSIM analysis.
Analyses were performed using the vegdist function in the vegan package
for R version 3.3.3 (Oksanen et al., 2017; R Core Team, 2017).

The spatial variation in species composition among plots, and its
relationship to landscape metrics were analyzed with canonical corre-
spondence analysis (CCA) using the vegan package (Legendre and
Legendre, 2012; R Core Team, 2017), and Euclidean distance as the
similarity measure and log-transformed abundance data. The optimal
spatial arrangement of the 16 sampling plots was plotted as a 2-di-
mensional ordination diagram following standard procedures described
in McCune et al. (2002). Landscape metrics whose values per plot had a
squared correlation coefficient (r2) > 0.3 with any of the two CCA axes
(Table B.1, in Appendices) are shown as vectors in the ordination dia-
gram. Species whose abundance were strongly correlated with any of
the two CCA axes are also shown.

Species richness, species abundance, and basal area of woody plants
for each of the 16 sampling plots were calculated (Table A.1). Deviance
of generalized linear models (GLMs) was analyzed separately for each
response variable to compare each among the four scenarios using the
stats package for R (R Core Team, 2017). We assumed a Poisson error
distribution and a log-link for richness, Quasi-Poisson error and a log-
link for abundance data, and a Gaussian error distribution and an

identity-link for basal area. Post hoc contrast tests were performed
(Crawley, 2013) to identify differences between scenarios using the
gmodels package for R (Warnes et al., 2015).

To analyze which landscape metric had the greatest effect on ve-
getation attributes we used an information-theoretic approach and
multi-model inference, testing the relative importance and direction of
explanatory variables separately on each response variable, and by
making inferences from all the models in a candidate subset (Burnham
and Anderson, 2002). To avoid the inclusion of auto-correlated land-
scape variables in a given model we used bi-variate GLMs and Pearson
correlation coefficients for all metrics, following Timm et al. (2016).
The variance inflation factor for all explanatory variables was also
computed to avoid collinearity using the car package for R (Fox and
Weisberg, 2011). Two independent GLM analyses were performed for
isolation landscape-level variables (i.e., distance metrics to the nearest
fragments) and for structural variables at the plot level (i.e., composi-
tion and configuration metrics). The Akaike Information Criterion
corrected for small samples (AICc) was used to select the best models
(Burnham and Anderson, 2002). Richness and abundance were assessed
with the quasi-AICc (QAICc) in order to correct for the over-dispersion
that is associated with count data (Calcagno, 2013).

A set of models was constructed representing all combinations of
explanatory variables, constrained to a maximum of three per model.
Models were ranked according to their AICc and delta values (ΔAICc),
following Burnham et al. (2011), and using a cutoff value of ΔAICc < 2
for model selection (Burnham and Anderson, 2002). Additionally, the
subset of models for which the sum of Akaike weights (∑wi) was higher
than 0.95 was considered to have 95% confidence of containing the best
approximating model, and thus was also selected as the subset of top
models (Whittingham et al., 2005). The ∑wi of each selected model, in
which a given explanatory variable was included, was used to assess its
relative importance (Burnham and Anderson, 2002). Weight values (wi)
of the top models subset were also used to produce model-averaged
parameter estimates (β), whose sign and magnitude represent the di-
rection and size of effect, respectively, of each explanatory variable on
each of the three response variables. Because all best models of richness
and abundance included the percentage of forest cover (FORCOV)
within the plot as the strongest explanatory variable, a further analysis
for each attribute was performed using the percent cover of forested
classes recognized in this study (see Table A.1; Fig. 2). This was done to
assess whether distinguishing the forest cover type would improve the
explanatory power of the models. All models were built using the
glmulti package for R (Calcagno, 2013).

A “leave one out cross-validation” (LOOCV) procedure (Picard and
Cook, 1984; Stone, 1974) was performed to evaluate the predictive
accuracy of each model as well as that of the averaged model derived
from the subset of top models, using the boot package (Canty and
Ripley, 2017) and the MuMIn package for R (Barton, 2018). The root
mean squared error (RMSE) was calculated as the squared root of the
average of the MSE obtained by each LOOCV iteration (James et al.,
2013).

3. Results

A total of 14,318 ha (71%) of the entire study area (20,070 ha) were
categorized as open areas with no woody cover and 267 ha were cov-
ered by water. The remaining 5485 ha (27%) correspond to the “forest
cover” category (woody vegetation ≥2.5 m) that was differentiated
into six classes (Table 1). The overall accuracy of the final land-cover
map classification was 94%, and the Kappa coefficient was 0.93. Classes
with the greatest accuracy were urban orchards, open areas, and iso-
lated trees followed by forested riparian belts and small wooded pat-
ches, while the tall and short canopy forest classes had the lowest ac-
curacy, albeit in all cases it was> 0.83 (Table C.1 in Appendix C).
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3.1. Community attributes of woody vegetation

A total of 1777 woody plants> 5 cm dbh, belonging to 88 species
from 39 families, were recorded within the 16 sampling plots (total
sampled area= 50.26 ha). Of these, the majority (1573 individuals)
were large trees with dbh > 10 cm. Overall density of woody plants
was 35.4 individuals ha−1. Of the 88 species censused, 80 were iden-
tified to the species level, four to genus, and three to family; only one
species was not identified. Fabaceae was the family best represented,
accounting for 18% of total richness (16 spp.), followed by Moraceae (9
spp.), Arecaceae, and Boraginaceae (5 spp., each). The 20 most abun-
dant species accounted for 81% of all individuals. Sixty-two species
(71%) were represented by 10 or fewer individuals, including 11 dou-
bletons and 21 singletons (see species list in Table D.1). In terms of plot-
level presence, twelve species were recorded in half or more of the
sampling units; Guazuma ulmifolia was the only species present in all 16
plots. The most abundant species was Gliricidia sepium (340 ind.), fol-
lowed by G. ulmifolia (210 ind.) and Acacia cochliacantha (143 ind.).
Most species (72.6%) are endo-zoochorous, 17.9% are anemochorous
and 8.3% have a different dispersal syndrome (other). Only 19 species
had an IVI > 5% and could be classified as dominant (Fig. 3). Of these,
G. sepium and G. ulmifolia were the only ones with an IVI > 20%,
however, species with IVI between 5 and 20% could be part of the
canopy and sub canopy of old-growth forests.

Species richness, abundance and basal area per sampling unit are
shown in Table A.1. Mean richness per plot was significantly different
among scenarios (X2

(3, 12) = 39.5; p < 0.001), being poorer in the
simplest scenarios (i.e., I and II;< 15 spp./plot) and richest in the more
complex scenarios (III and IV;> 20 spp./plot). Mean abundance per
plot was significantly different among all four scenarios (F(3, 12)= 22.6;
p < 0.001), increasing steadily with lower landscape disturbance in-
tensity (22.0 plants/plot scenario I vs. 234.0 plants/plot in scenario IV;
p < 0.05). Even though basal area per plot also increased, only the
least (I; 11.6m2/plot) and most complex scenarios (IV; 85.6 m2/plot)
differed significantly from each other (X2

(3, 12)= 17.9; p < 0.001;
Table 2).

3.2. Species composition analysis

Rank-abundance curves, pooled by scenario, indicate that only a
few species dominated each scenario. The same two most dominant
species as determined by IVI analysis were also dominant according to
the rank-abundance curves. Additionally, A. cochliacantha and
Acrocomia aculeata were dominant in at least three scenarios; other
palms were amongst the most abundant in scenarios II and IV (Fig. 4).
In scenarios III and IV, however, a notably higher number of species
were rare (Fig. 4; Table D.1). Floristic composition varied among sce-
narios (ANOSIM; p < 0.05) in terms of their similarity values
(Table 3). Scenarios III and IV had the highest similarity (0.53) with 39
species shared. Scenarios II and III had intermediate similarity (0.43),
while remaining comparisons had lower values (< 0.33).

Ordination analysis showed a clear distinction in floristic composi-
tion between sampling units and scenarios (Fig. 5a). Total variance in
the species data explained by the constrained ordination was 44%. Both
CCA axes explained 22.5% of total cumulative variation in species
composition, with 14.2% by axis 1 (eigenvalue 0.405) and 8.3% by axis
2 (eigenvalue 0.238). The CCA ordination roughly grouped sampling
units of a given scenario closer together with the exception of scenario
IV, whose plots were also largely separated from all other scenarios.
CCA axis 2 represents a gradient from simpler (negative values) to more
complex scenarios (positive values) in landscape structure and hetero-
geneity, and scenarios generally fit that pattern. CCA axis 1 grouping
was less clear; placing plots with more cultivated species towards the
left side of the CCA-plot, and those with more old-growth forest species
to the right. The abundance of some species that are common in late
successional stages or in old-growth forest were positively correlated
with CCA axis 1. In contrast, the presence and abundance of cultivated
species was negatively correlated with this axis (Fig. 5b). Of all the
within-plot landscape metrics derived from our land cover map,
FORCOV and SHDI both had the strongest positive correlation with
CCA scores along axis 2 (Fig. 5a), whereas D_fragment > 1 ha and NP/
ha both had a strongly negative correlation with this axis (Fig. 5a).
D_rip had a strong negative correlation with axis 1 and a weaker po-
sitive correlation with axis 2 (Fig. 5a, see also Table B.1).

Fig. 3. Importance Value Index (IVI) of dominant species (> 5%) ranked from highest to lowest and pooled for all 16 sampling units. The contribution to IVI by
relative dominance (RDom=basal area), density (RDen) and frequency (RFrec) per species is shown.
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3.3. Spatial variation of vegetation attributes related to landscape metrics

In order to analyze whether both structural and isolation variables
should contribute to the explanation of the response variables (i.e.,

woody plant attributes), we identified the most plausible models and
the most important variables. Overall, the explanatory variables that
best explained the spatial variation in woody vegetation attributes were
those associated with landscape composition and configuration.

Table 2
Summary of vegetation attributes and landscape metrics pooled by scenario (Sce; n= 4 sampling units per scenario). Totals per scenario (in bold) and means (± 1 SD
in italics) per plot for richness, abundance, and basal area of woody plants (different letters indicate significant differences between scenarios). For landscape metrics,
either the mean (±1 SD) or the range per scenario are shown as appropriate (see Section 2.4 for description of each metric). Values for each of the 16 sampling units
are shown in Table A.1).

Attribute (or metric) Sce I Sce II Sce III Sce IV Tot.

Richness (#spp) 29 31 50 71 89
Mean ± s.d./plot 10.8a ± 3.4 13.8a ± 2.6 22.3b ± 3.4 27.8b ± 7.0 18.6 ± 8.0
Abundance (#ind.) 88 263 490 936 1,777
Mean ± s.d./plot 22.0a ± 11.8 65.8b ± 29.7 122.5c ± 20.3 234.0d ± 86.1 111.1 ± 92.2
Basal area (m2) 11.6 23.2 67.6 85.8 188.2
Mean ± s.d./plot 2.9a ± 2.2 5.8ab ± 5.1 16.9ab ± 11.4 21.5b ± 7.0 11.8 ± 10.2

Landscape metrics ([range/plot]/mean ± s.d.)
D_remn (m) [455–2353] [296–2800] [429–3308] [30–143] [30–3308]
D_rip (m) [484–1138] [102–1250] [424–1048] [424–1143] [102–1250]
D_fragment (m) [216–566] [102–1030] [34–413] [30–143] [30–1030]
FORCOV (%) [2.5–6.6] [6.1–16.1] [16.4–37.4] [30.8–43.8] [2.5–43.8]
AREA_AM (m2/ha) 0.06 ± 0.04 0.07 ± 0.05 0.31 ± 0.27 0.38 ± 0.13 0.20 ± 0.20
ED (m/ha) [65–168] [243–322] [206–383] [312–441] [65–441]
NP/ha (m/ha) 2.2 ± 0.6 5.3 ± 1.5 3.6 ± 1.1 4.0 ± 1.1 3.8 ± 1.5
SHDI [0–0.68] [0–0.73] [0.62–0.99] [0.68–1.13] [0–1.13]

Fig. 4. Rank-abundance curves for each scenario, pooling the 4 sampling units for each one. Species are abbreviated using the first three letters of the genus and
specific epithet; see full species names in Table D.1. Colored dots highlight species represented by 10 or more individuals (except in scenario I, where species ≥5
individuals are colored).
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Structural variables at the plot level (Fig. 6) had higher explanatory
power for richness, abundance, and basal area than the isolation vari-
ables did (Table E.1). Models for basal area had much lower ex-
planatory power than those of richness or abundance (Fig. 6; Table
E.1). Based on model averaging, all structural plot-level variables were
positively related to the three vegetation attributes, more strongly with
richness and abundance. However, vegetation attributes were nega-
tively and poorly related to isolation variables (Table E.2).

Species richness was best explained by the metric FORCOV
(∑wi=0.98; Fig. 6a), which was included in all selected plausible
models; whereas abundance of woody plants was best explained by
FORCOV (∑wi=1.00) and NP/ha (∑wi=0.51; Fig. 6b). In turn, basal
area was best explained by the density of the forest edge (ED;
∑wi=0.92). It is important to note that ED was the main explanatory
variable of basal area, but also was strongly and positively correlated
with FORCOV, which is why the latter variable was not included in
models for basal area (Tables E.1.b, and E.2.b). However, the un-
conditional variance of explanatory variables (except ED) of basal area
models were usually greater than β (Table E.2), suggesting caution in
the interpretation of the averaged model for this attribute (sensu
Burnham and Anderson, 2002). Cross-validation (LOOCV) of the aver-
aged subset of top-models for structural variables resulted in an esti-
mated error (RSME) of± 4.7 species per plot (15.7% of total range) for
richness and±41.3 individuals per plot (11.8% of total range) for
abundance. For isolation variables the error (RMSE) was almost twice
as high (Table E.2a) and thus much less accurate, than the models based
on structural variables (Table E.2b).

When forest cover types were explicitly taken into account

(assessing the relative effect of each forest class) model selection results
indicate that species richness and abundance are also explained by
these within-plot metrics (79% and 92% of explained deviance, re-
spectively; Fig. 7), while they are poorly related to basal area (< 30%).
Cover percentage of tall canopy forest fragments (including the two
large remnants; TFC+RF), was the strongest explanatory variable for
species richness (Fig. 7a) and abundance (Fig. 7b). Other powerful
explanatory variables for species richness and abundance were the
percent cover of isolated trees pooled with the percent cover of small
wooded patches (IT+ SWP), as well as the percent cover of short ca-
nopy forest fragments (SFC). The most plausible model for species
richness and for abundance includes the types of cover mentioned
above (Table E.3). According to model averaging, those cover types are
positively and strongly related to woody species richness and abun-
dance (Table E.4). For the averaged model from the top-models subset
distinguishing forest cover types, the estimated error (LOOCV-RSME)
for richness was±6.4 spp./plot (21.4% of total range) and for abun-
dance it was± 54.3 ind./plot (15.6% of total range; Table E.4).

4. Discussion

Our study highlights the importance of arboreal elements within
tropical pastures for the conservation of native flora in anthropic
landscapes, as well as the potential of using structural landscape me-
trics—derived from image analysis and remote sensing data—as reli-
able indicators of the spatial distribution of woody plant species rich-
ness and abundance in highly deforested landscapes dominated by
cattle pastures. Our results are important for the design and im-
plementation of management tools within rural landscapes, aimed to
promote biodiversity conservation without stopping livestock produc-
tion.

4.1. The rural landscape of Jamapa: woody plants within active pastures

The deforestation of tropical forest in Jamapa and central Veracruz
is very old, having begun long before the arrival of Europeans, when
pre-hispanic slash-and-burn agriculture was extensively practiced in the
area (Escamilla-Perez, 2013). After the conquest, the Spaniards in-
troduced cattle in 1580 and more expansively in the early 1600 s when

Table 3
Similarity in the species composition of woody species among the four land use
intensity scenarios; showing the total number of species per scenario (bold
numbers in diagonal grey boxes); number of shared species (above the diagonal)
and similarity values, between each pair of scenarios (below the diagonal).

Sce I Sce II Sce III Sce IV

Scenario I 29 19 20 23
Scenario II 0.32 31 27 26
Scenario III 0.26 0.43 51 39
Scenario IV 0.15 0.28 0.53 71

Fig. 5. CCA ordination analysis of the 16 sampling units (IT01 to IT16). Left panel (a) shows sample ordination as dots with different colors for each scenario: I
(black), II (red), III (green) and IV (blue). Landscape metrics that had a relatively high correlation (r2≥ 0.3) with either of the two CCA axes are shown as vectors
(length and direction of vector depicts the strength and direction of correlation; the angle is proportional to the correlation strength within a given axis; sensuMcCune
et al., 2002). The right panel (b) shows those species (indicated by a ‘+’) whose incidence and abundance were strongly correlated with either of the CCA axes
(species are abbreviated using the first three letters of the genus and the specific epithet; see Table D.1 in Appendices for full species names).
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the first livestock permits (estancias) on the continent were granted
throughout central Veracruz, including Jamapa (Sluyter, 1999). With
the introduction of cattle, deforestation increased substantially and by
1950 more than 70% of the Jamapa area had been cleared.

Despite the considerable loss of forest and extensive habitat frag-
mentation, there are still forest or arboreal cover patches of different
sizes and canopy heights in the region (Fig. 1). Remnant fragments, tall

canopy forest fragments and riparian belts represent the most durable
arboreal elements in the landscape today and are the richest in tree
species, containing the largest and tallest trees, with some taller than
15m, though they only occupy a small fraction (< 9%) of the study
area (Table 1). They represent the oldest secondary and old-growth
forest patches with some of the least disturbed arboreal canopies in the
area. The short canopy fragment class (< 10m) corresponds to

Fig. 6. Isolation (left) and structural (right) variables that best explain the spatial variation in vegetation attributes of the 16 units sampled for: Richness (a),
Abundance (b), and Basal area (c). Variables shown are those included in the ΔAICc < 2 set of models (black bars), and the Σwi > 0.95 subset (grey bars). The sum
of Akaike weights (Σwi) indicates the importance of each explanatory variable for each attribute modelled. Goodness of fit for each complete model is shown in the
lower right side of each panel, as the percentage of explained deviance (Crawley, 2013).

Fig. 7. Relative importance of the different types of forest cover classes present within sampling units as explanatory variables of richness (a) and abundance (b) of
woody plants within each plot, that were included in the ΔAICc < 2 set of models (black bars), and the Σwi > 95% subset (grey bars). The sum of Akaike weights
(Σwi) indicates the importance of each explanatory variable for each attribute. Goodness of fit of each complete model is shown at the lower right side of each panel,
as the percentage of explained deviance (Crawley, 2013). Forest cover types are: TFC(+RF) (tall canopy forest, including the two remnant forest fragments); SFC
(short canopy forest fragments pooled with urban orchards); and IT+ SWP (isolated trees pooled with small wooded patches that include linear clusters of planted
trees in living fences).
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relatively young secondary forest, and are the most dynamic arboreal
elements of the landscape, since they are usually reconverted to pasture
or crop-fields within a short period of time (see Reid et al., 2018).
However, when left uncut they grow taller and richer in tree species
(Chazdon, 2014). Finally, living fences and isolated trees, occurring at
different densities within pastures, are not usually detected in low re-
solution images (e.g. Landsat with 25m/pixel resolution) or they are
ignored by researchers when digitizing their study areas. These land-
scape elements are, however, easily detected in higher resolution
images (≤5m/pixel) and in Jamapa’s landscape they represent the
most common types of arboreal element widely spread throughout the
pastures of the area (Fig. 1). These findings suggest that forest re-
generation through secondary succession is still occurring in the area
alongside the selective removal or promotion of some woody species by
farmers.

Due to the long history of deforestation, agricultural use, and hyper
fragmentation in the area we expected to quantify only a handful of tree
species, mostly fast-growing heliophiles that are highly competitive and
typical of highly disturbed sites that have undergone floristic homo-
genization (Arroyo-Rodríguez et al., 2013). To our surprise, we found
more than 80 species of woody plants in the active pastures of Jamapa
in the ca. 50 ha sampled (Table D.1). The latter is within the range of
70–140 species of woody plants that has been reported for several
pasture-dominated landscapes in the Neotropics, particularly in Central
America (Harvey et al., 2011; Villanueva et al., 2004) and southern
Mexico (Grande et al., 2010; Guevara et al., 2005; Villanueva-Partida
et al., 2016).

Most of the species recorded (83%) are typical of SDTF; of these
some (≈25%) are also very common in rural vegetation or open areas
including pastures. The remaining 17% are species that are only found
in highly disturbed secondary vegetation habitat, where they can reach
very high densities, or they are introduced and cultivated in the area
(Castillo-Campos and Travieso-Bello, 2006). Dominant species (IVI >
20%) in the pastures of Jamapa include tree species that are wide-
spread in Mexican, Central American and Colombian pastures, such as
G. sepium and G. ulmifolia, both of which are highly favored by cattle
ranchers (Harvey et al., 2011; Guevara et al., 2005; Siqueira et al.,
2017; Villanueva-Partida et al., 2016), indicating that there is a high
potential for floristic homogenization in this landscape. However, our
results also show that the other dominant species included some long-
lived and persistent pioneers that commonly form part of the SDTF
canopy, such as F. cotinifolia (IVI value did not include the focal IT),
Tabebuia rosea, Cedrela odorata, Maclura tinctoria, Bursera simaruba, as
well as some tree species that are part of the canopy of more mesic
forests, such as F. insipida and Ehretia tinifolia. In the same way, small
trees or shrubs common in the understory or sub-canopy of SDTF, such
as Achatocarpus nigricans, Diphysa americana, and Spondias purpurea,
were also important (Fig. 3). Likewise, several native species were also
among the most common species in the pastures studied, including
some late successional species of seasonally dry tropical areas. More-
over, several rare species detected in our study are natives of the ori-
ginal SDTF, such as Brosimum alicastrum, Ceiba pentandra, Annona pur-
purea, Crataeva tapia, and Diospyros nigra (Fig. 4). Together they
account for a relatively high proportion of the richness detected, greatly
increasing the floristic heterogeneity of the woody flora in our study
site.

The persistence of a diversity of forest species within the old and
extensive pastures of Jamapa indicates that rural landscapes could be
important reservoirs of native woody flora and that their maintenance
in the landscape should be favored more emphatically. The current
distribution and species composition of arboreal elements within pas-
tures is based mainly on agricultural decisions and not explicitly on
biological conservation criteria. Thus, conservation strategies must be
incorporated into pasture and cattle management practices, in order to
maintain and increase the population size of key native forest species
within the agricultural landscape, not only to conserve the diversity of

woody plants, but also to promote the ecosystem services that these
species provide (Manning et al., 2006). For example, 73% of the re-
corded species are endo-zoochorous and provide an abundant diversity
of edible fruit for vertebrate frugivores in the pastures studied. In ad-
dition, a preliminary analysis of the avifauna visiting the 16 focal iso-
lated F. cotinifolia trees and their surroundings, censused 97 bird species
(Cadavid-Florez, unpublished data), of which 34% are migratory. Fur-
thermore, Jamapa is located within the corridor of North-American
migratory birds in the lowlands of Veracruz, an area that has been
extensively deforested making the presence of forested patches or iso-
lated trees within pastures for these migrating species even more im-
portant.

4.2. Landscape metrics and woody vegetation attributes

Our multi-model inference results indicate that it is possible to as-
sess key attributes of the community of woody plants present in active
pastures by using easily obtainable landscape metrics as indicators of
these attributes. Several findings can be highlighted; first, the propor-
tion of the area that is covered by forested vegetation in a given pasture
site, detected from high resolution images and remote sensing data, was
the strongest explanatory variable of the richness and abundance of
woody plants growing in that site. The performance of forest cover
percentage in describing plant richness and abundance was similar to
results of Hernández-Stefanoni and Dupuy (2008), who found a strong
positive association between tree species density and the percentage of
land of a given patch-type in a landscape. Second, our results show that
landscape heterogeneity was also positively related to woody plant
richness and abundance, being a strong indicator of plant species
richness in highly modified anthropic landscapes, consistent with the
findings of Brotons et al. (2005) and Stahlheber (2016). The effects of
landscape patterns on plant communities have been studied mainly
using a fragment- or patch-centered approach, however our results
highlight that similar trends occur within the landscape matrix outside
of forest fragments.

Proximity to the nearest forest fragment has been reported as a
metric that is strongly tied to species richness (Hernández-Stefanoni,
2005). Nonetheless, in our study, the three isolation variables for
proximity to forested fragments did not have the expected positive ef-
fect on vegetation attributes. For instance, sites that were less than
150m away from the two largest remnants of the original SDTF (i.e.,
our scenario IV plots) were as rich in woody species as those more than
400m away from remnant forest (some of them>2 km away; scenario
III plots). Thus, landscape composition and configuration (structural
variables at the plot-level) better explained the spatial variation in
species richness and abundance of woody plants in the fragmented
landscape of Jamapa than did landscape-level isolation variables. Our
results complement studies indicating that landscape composition and
configuration affect plant diversity (Häger et al., 2014; Hernández-
Stefanoni and Dupuy, 2008; Torras et al., 2008).

Our results also suggest that the metrics of landscape composition
(in particular, percentage of forest cover) have a higher explanatory
value than metrics of landscape configuration (such as proximity to
large forest fragments) as indicators of species richness and abundance,
a result that is consistent with those of other studies (Alvarado et al.,
2017; Arroyo-Rodríguez et al., 2016; Hernández-Stefanoni and Dupuy,
2008). Nevertheless, different landscape configurations are also re-
levant to the spatial variation in species richness of woody plants, so
having more arboreal elements of different types and arrangements
within pastures would increase species richness. On the other hand, the
spatial variation of the basal area of woody vegetation was poorly ex-
plained by our models.

We determined that the combination of high resolution aerial
photographs and vegetation height information derived from DEM data
is a powerful approach for quantitatively assessing landscape hetero-
geneity (i.e., the presence and proportion of different land cover types
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within a landscape) in fragmented landscapes. This structural landscape
heterogeneity was strongly and positively related to heterogeneity in
floristic composition. Sampling plots with a high proportion of forest
cover and heterogeneity in woody cover classes not only had high
species richness within the plot, but had notably higher variability in
floristic composition among plots than sites that had a simpler struc-
ture. Our analysis, by distinguishing the different types of forest cover
classes, showed that the greatest contribution to woody species richness
and heterogeneity within plots is made by two main types of arboreal
cover: forest fragments with a tall canopy and isolated trees. The con-
tribution of the former to richness is almost self-explanatory since they
contain the highest species density and diversity of woody plants in the
landscape, so if the plot sampled included even a small portion of one of
these fragments, its contribution to richness was great. However, while
the contribution of isolated trees to richness and floristic heterogeneity
is good news, it is not as obvious; their diversity and density reflect
complex management decisions by each farmer, and therefore varies
widely among pastures. Our results demonstrate that isolated trees are
important to maintain the species richness and floristic heterogeneity of
woody plants in rural landscapes dedicated to cattle raising.

Isolated trees scattered in pastures have an enormous potential for
catalyzing and accelerating secondary succession in fragmented land-
scapes by acting as regeneration nuclei (Guevara et al., 2005), and they
may also be important seed sources (Laborde et al., 2008). A relatively
high density and diversity of isolated trees within pastures could be one
of the reasons why proximity to forest fragments or to forested riparian
belts was not related to woody species richness in our plots. Ad-
ditionally, several authors have proposed that isolated trees may form
part of complex, structured matrices, which enhance and maintain the
availability of different resources within pastures and crop-fields
(Fahrig et al., 2011; Guevara et al., 1998; Harvey et al., 2011). A re-
latively high density and diversity of isolated trees increase landscape
connectivity and represent a ubiquitous device that can enhance resi-
lience in agricultural landscapes. These trees, properly managed, could
play an important role as landscape keystone structures for the con-
servation of native biodiversity and the provision of ecosystem services
(Guevara et al., 2005; Manning et al., 2006).

Pastures that have very low woody cover, similar to our sampled
plots of scenarios I and II (≤15%), should be targeted to increase the
proportion of woody cover that they have, in order to increase the
abundance and richness of woody species. A more specific and optimal
goal would be to reach between 20 and 40% of woody cover in all
pastures (resembling our scenarios III and IV), by increasing the density
of isolated trees in open pastures and also by promoting passive or
active restoration of woody vegetation in small patches scattered
throughout those areas. These should be incentivized with schemes
similar to those used in the payment of environmental services in order
to increase the conservation potential and resilience of this rural
landscape. Structural landscape metrics, incorporating high resolution
image analysis and height data information (i.e., LIDAR-DEM data),
could be used to detect which farmers attain these goals and have ar-
boreal or forested patches with trees> 10m tall since they are the
landscape elements that contribute the most to conservation and con-
nectivity.

5. Conclusions

It is clear that more complex and heterogeneous agricultural ma-
trices could retain and enhance woody plant diversity, while main-
taining several ecosystem functions. We highlight how, of the landscape
composition metrics used, forest cover is the strongest indicator of
woody vegetation richness and abundance, while landscape hetero-
geneity is strongly associated with high floristic heterogeneity. As we
show in this study, the combination of high resolution images with
vegetation height data, obtained from remote sensing, is a powerful tool
for the assessment of landscape heterogeneity. Forest fragments with

relatively tall canopies (> 10m) and isolated pasture trees are crucial
for the conservation of native forest flora. Based on our findings, we
propose that strategies aimed at increasing the area of woody cover and
diversity of woody plants within pastures be implemented to maximize
the heterogeneity of arboreal or forested elements within the agri-
cultural landscape. This will promote the conservation of biodiversity,
and will enhance forest resilience and the sustainability of tropical
landscapes dedicated to raising livestock. This is a concrete proposal
that should be made to farmers in rural landscapes and is particularly
crucial in highly deforested landscapes such as those of central
Veracruz, and the entire lowland tropical region of Mexico and Central
America; even more so given the current and troubling future scenario
of global climate change in the region.
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