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Abstract
Identifying species’ extinction risks and understanding their ecological associations are considered 
critical steps for achieving long-term conservation of biodiversity in the face of global changes. We 
evaluated the potential impact of global climate change (GCC) on the co-distribution patterns of 
12 Mexican endemic hummingbirds and 118 plants they used as nectar resources. Using ecologi-
cal niche modeling, we estimated the species’ potential distribution areas and their degree of range 
overlap at present and under future scenarios (2040’s–2080’s). We then performed temporal beta 
diversity analyses (based on Sorensen’s index) to assess changes in community assembly over time. 
To determine the potential impacts of GCC on the organization of hummingbird-plant relation-
ships, we calculated niche overlap and network size metrics. Our results showed that even if we 
assume that species can disperse to novel habitat areas, at least 46.2% of hummingbirds and 45.8% 
of plant species will face range reductions due to changes in their climate-suitability areas, which 
will in turn result in an increased mismatch of their co-distribution patterns. Additionally, tempo-
ral beta analyses suggested species turnover between the present and future, as well as changes in 
niche size and overlap for hummingbird-plant co-occurrence networks. These changes could lead to 
the formation of novel assemblages through species reshuffling, with a tendency to the specializa-
tion of networks. These results emphasize that we should not expect uniform or matched responses 
among species and regions into the future. Therefore, analyses of species’ co-occurrence are needed 
to accomplish the long-term protection of important ecosystem services such as pollination.

Keywords Global changes · Biotic interactions · Ecological niche modeling · 
Co-occurrence networks · Pollination networks

1 Introduction

Biotic interactions are considered an essential component of biodiversity because 
of their important role in maintaining communities’ ecological dynamics (Thompson 
2009; Simmons et al. 2018) and key ecosystem properties (i.e., stability, resilience, and 
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resistance; Bascompte and Jordano 2013). Also, by maintaining ecosystem functions, 
biotic interactions mediate species’ responses to global environmental change (Tyliana-
kis et al. 2008). Species can only interact if they are simultaneously present. Unraveling 
species’ co-occurrence patterns (i.e., range overlap) is a crucial first step toward under-
standing how global change may impact the interactions between species and through-
out the community assembly (including species interactions). However, there are still 
large literature gaps in this area (Heinen et al. 2020).

Synergistic and individual effects of land use and global climate changes (GCC) 
may intensify extinction risk and redistribute biodiversity (Ceballos and Ehrlich 2018; 
Lovejoy and Hannah 2019). In this sense, landscape homogenization is expected to lead 
to large-scale compositional shifts (i.e., local extinction of species and/or replacement 
by newcomers) as well as the modification (i.e., novel, altered, or lost) of ecological 
interactions (Blois et  al. 2013), ecosystem functioning, and the services provided by 
them (Senapathi et  al. 2015; Kovács-Hostyánszki et  al. 2017). Loss of key ecological 
interactions such as pollination and seed dispersal can have detrimental impacts on eco-
systems and even cause their collapse, mainly because many species cannot complete 
their life cycles without their interaction partners (Jordano 2016a). In fact, several stud-
ies have documented pollinator declines and the threats behind them (e.g., Potts et al. 
2016; Kovács-Hostyánszki et al. 2017), which has led to pollinators becoming the focus 
of current international concern. Hence, accounting for the complex interplay between 
climate and habitat change and the organization of biotic interactions is considered a 
research priority in order to achieve long-term conservation targets (García-Callejas 
et al. 2018; Pearson et al. 2019; García‐Callejas et al. 2019; Regolin et al. 2020).

To address these challenges, methodological frameworks such as ecological niche 
and species distribution models have been increasingly used to explain, understand, 
and predict the spatio-temporal distribution of biodiversity (see Peterson et  al. 2011). 
The use of these methodologies has exploded over the past 2 decades, with more than 
6000 studies on biodiversity assessments in the past 20 years (Araújo et al. 2019). How-
ever, despite the extensive use of tools that are well suited to describing species’ co-
occurrence patterns, community assembly and potential species interactions are often 
overlooked in the literature and when designing specific management efforts (Palacio 
and Girini 2018; Ramírez-Ortiz et  al. 2020; Heinen et  al. 2020). This is an important 
information gap because changes in biotic associations can be as relevant as changes in 
temperature and precipitation, if not more so (Araújo and Luoto 2007; Şekercioğlu et al. 
2012; Luna et al. 2022).

Currently, an approach to deal with this problem is the use of co-occurrence net-
works, in which species are treated as nodes and their co-occurrences as links. These 
are helpful for inferring potential broad-scale interactions between species and for 
understanding the organization of biotic associations across time and space (Araújo 
et al. 2011; Corro et al. 2019; Antoniazzi et al. 2020). In fact, network size (i.e., number 
of species in the network) and niche overlap (i.e., mean similarity in interaction pattern 
between species of the same trophic level) are two network descriptors that could be 
suitable for evaluating co-occurrence networks (Dormann et  al. 2009). Although this 
approach has its limitations (see Blanchet et  al. 2020), it is an important first step to 
improve our knowledge of species assembly in the face of rapid global change (Moru-
eta-Holme et al. 2016).

Hummingbirds (Aves: Trochilidae) are an ideal model to explore the relationships 
between the spatio-temporal distribution of biodiversity and biotic interactions. These spe-
cialized nectarivorous birds play an important role in ecosystem functioning by pollinating 
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nearly 15% of the plant species in North and South America (Buzato et  al. 2000; Able 
2000). At the same time, they are considered one of the most threatened groups in the 
world (https:// www. iucnr edlist. org/). Predictions of extinction risk in hummingbirds are 
not optimistic, since population declines and important habitat reductions are expected as a 
consequence of global environmental changes (e.g., Infante et al. 2020b; Chávez-González 
et al. 2020; Prieto-Torres et al. 2021). Moreover, the spatio-temporal distribution patterns 
of hummingbirds could also vary due to the flowering phenology of the plants they use 
as nectar resources (Correa-Lima et al. 2019; Infante et al. 2020a; Chávez-González et al. 
2020). Such changes in floristic composition and phenological overlap represent further 
challenges for plant–hummingbird interactions in the future. Given that a reduction in 
these pollinators could create a feedback loop with biodiversity loss and degradation of 
ecosystem services (e.g., Ollerton et al. 2011), it is imperative to evaluate the susceptibility 
of these interactions to GCC.

The hummingbird species of Mexico are no exception to these future critical-reduction 
scenarios, including both currently threatened and non-threatened species. Recent studies 
have shown that climate warming could have a serious negative impact on individual spe-
cies by decreasing their abundance, increasing their extinction risk, and even reorganizing 
entire communities throughout the country in the coming decades (e.g., Correa-Lima et al. 
2019; Chávez-González et al. 2020; Prieto-Torres et al. 2021). More importantly, results 
reinforce the idea that current protected areas are not effective for safeguarding these 
species at present, nor will they be in the future (Prieto-Torres et al. 2021). However, an 
important drawback of that study is that only climate-suitability effects were considered 
when modeling the hummingbirds’ distribution under future GCC scenarios. Biotic effects, 
such as changes in the floristic composition or in hummingbird-plant co-occurrence pat-
terns, were not evaluated. So, the impacts and extinction risks may be even more dras-
tic, especially for globally threatened and endemic species. Furthermore, a recent study 
assessing hummingbird-plant communities’ vulnerability to GCC suggests that in North 
America, species in the network periphery will be more impacted that those core (gen-
eralist) taxa with the ability to connect to many mutualistic partners distributed through-
out the network (Sonne et al. 2022). These predicted impacts on network roles could have 
important consequences in network structure, favoring the generalization of hummingbird 
communities. Therefore, future conservation efforts should consider both biotic and abiotic 
information to detect which species and regions are most resilient to biodiversity loss (see 
Pearson et al. 2019).

In this work, we sought to answer the following questions: (1) how could predicted 
GCC impact niche overlap and the size of co-occurrence networks of Mexican endemic 
hummingbirds and the plants they pollinate? And (2) does climate-driven redistribution 
of birds and plants indicate the uneven replacement of specialists by generalists across the 
region? We assumed that because future environmental change will potentially produce 
species-specific responses––such as distributional shifts (e.g., elevational ranges and local 
abundance) and migration patterns––it may lead to uneven modifications of the species co-
occurrence patterns and, consequently, alter the interspecific dynamics that control interac-
tions (McConkey and O’Farrill 2015; García-Callejas et al. 2018, 2019). An understanding 
of this information will facilitate decision-making to support rational biodiversity protec-
tion. This is especially critical because the conservation possibilities for hummingbirds and 
other pollinator communities will drastically decrease over time (see Dicks et  al. 2016; 
Potts et al. 2016).

https://www.iucnredlist.org/
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2  Methods

2.1  Species selection and historical records

Species selection was based on the diversity within the interaction networks of 12 hum-
mingbird species that are endemic to Mexico (Arizmendi and Berlanga 2014) and the avail-
ability of biological information and occurrence data of the plants pollinated by them. The 
plant list was compiled from two sources: (a) specialized literature (see Online Resource 1) 
and (b) the taxonomic identification of specimens that were recorded as nectar resources 
and photographed in online databases (EncicloVida [https:// encic lovida. mx/], eBird 
[https:// ebird. org/ explo re] and iNaturalista [https:// www. natur alista. mx]). In sum, occur-
rence records for 118 plant species were assembled, excluding plants that are exotic in 
Mexico. All hummingbird species’ names followed Chesser et al. (2020) and plant names 
followed the Linear Angiosperm Phylogeny Group taxonomy (The Angiosperm Phylogeny 
Group et al. 2016).

For each species, occurrence records were obtained from different scientific collections 
and online collaborative public databases (Global Biodiversity Information Facility [GBIF; 
https:// www. gbif. org/], SNIB [https:// www. snib. mx/], eBird, SiB-Colombia [https:// sibco 
lombia. net/]). The information from GBIF was downloaded directly using the "rgbif" 
library of R software (Chamberlain et al. 2021). To avoid uncertainties related to geoco-
ding errors that affect model performance (Beck et al. 2014), a data cleaning process was 
performed for each species. This process consisted of four steps: (a) the removal of records 
without latitude–longitude coordinates or that had data transcription errors (e.g., reversed 
latitude and longitude fields), (b) the exclusion of records that did not have data for the bio-
climatic variables used, (c) removal of data falling outside the year interval from 1970 to 
2021, and (d) elimination of occurrences that were repeated among sources and retaining 
only information corresponding to unique localities within a vicinity of ~ 5  km2 (i.e., same 
to spatial resolution of bioclimate variables).

We decided to exclude records from years prior to 1970 because important climate 
changes have been recorded over the past 4 decades (Fick & Hijmans 2017; Karger et al. 
2017), such that the climates at those localities may have changed substantially since the 
time of collection, which could affect the reliability of our models. Moreover, for records 
from 2001 to 2021, an outlier exclusion procedure was performed in the environmental 
space by removing localities where temperature and precipitation values (based on annual 
mean temperature [Bio 01], annual precipitation [Bio 12] and precipitation seasonality 
[Bio 15]) were outside of the limits (considered at the upper and lower quartiles) defined 
by occurrence data within the time range (1970–2000) of bioclimatic variables (Robert-
son et  al. 2016; Prieto-Torres et  al. 2020). This latter step was important for identifying 
problematic or imprecise occurrences with incorrect climate values (Roubicek et al. 2010; 
Pérez-Navarro et al. 2021).

Additionally, to avoid biases derived from spatial autocorrelation in areas that were 
heavily represented in the data, we only retained localities that were farther from each other 
than the mean distance between occurrence records for each species (e.g., Aiello-Lammens 
et al., 2015; Prieto-Torres et al., 2021). All data were transformed to decimal degrees based 
on the WGS84 datum. Species with unbiased distributions (i.e., with a good representation 
of their known geographic distribution) and with a minimum of 10 records were selected. 
After all of these steps, there were a total of 71,285 unique occurrence records for all hum-
mingbirds and plant species (see Online Resource 2).

https://enciclovida.mx/
https://ebird.org/explore
https://www.naturalista.mx
https://www.gbif.org/
https://www.snib.mx/
https://sibcolombia.net/
https://sibcolombia.net/
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2.2  Ecological niche modeling and validation

The maximum entropy algorithm implemented in MaxEnt ver. 3.4.3 (Phillips et al. 2017) 
was used to model climatic suitability for the potential distributional areas per species. This 
algorithm estimates the probability of suitability, ranging from 0 [unsuitable] to 1 [per-
fectly suitable], for each pixel given a sample of the background, following the idea that 
the expected value for each feature (i.e., climatic variables) must be equal to the empiri-
cal average value of presence points of the species (Phillips et al. 2006; Elith et al. 2006, 
2011). This algorithm was selected for its good performance using presence-only data 
(Elith et al. 2011) and because it allows a calibration protocol to assess model complexity 
by selecting the best modeling parameters (see Muscarella et al. 2014; Cobos et al. 2019).

To characterize the species’ ecological niches, environmental data from WorldClim 
2.1 (at ~ 5  km2 cell size resolution; Fick and Hijmans 2017) was used. Four bioclimatic 
variables were excluded (bio 8, bio 9, bio 18, and bio 19) because they showed spatial 
anomalies in the form of odd discontinuities between neighboring pixels (Escobar et  al. 
2014). Furthermore, to avoid the overfitting and overestimation of model accuracy that can 
occur with an overly dimensional environmental space and collinearity among variables, 
two approaches were applied: (1) selection of a subset of uncorrelated variables based on 
a Pearson’s correlation coefficient (r < 0.8) and variance inflation factor (VIF < 10) and (2) 
derivation of a set of four variables that explained up to 95% of the total variance using a 
principal component analysis (PCA; see Hanspach et al. 2011). The selection of the vari-
ables set was performed using the statistical software R 3.4.1 (R-Core Team, 2018) and the 
packages “usdm” (Naimi, 2015) and “ENMGadgets” (Barve and Barve, 2016). In addition 
to climate variables, we included elevation (USGS 2001), which has been used in numer-
ous studies as a proxy for variables (e.g., microclimate or edaphic conditions) that are cor-
related with the physiological requirements of species (e.g., Rheingantz et al. 2014; Kübler 
et al. 2016).

On the other hand, given that dispersal plays a crucial role in the distribution of organ-
isms and must be considered in the development of such models (Barve et al. 2011), an 
area for model calibration, known as “M,” was created (Soberón and Peterson 2005). For 
each species, this area (a GIS mask) was defined by intersecting the occurrence records 
with the terrestrial ecoregions (Dinerstein et al. 2017) and the biogeographical provinces 
of the Neotropics (Morrone 2014) and excluding any grid cells outside these regions. This 
consideration was based on the assumption that these regions may define the historically 
accessible areas (because there are no ecological or geographical barriers that prevent 
access) for each species in geographical space (Soberón and Peterson 2005).

For all cases, models were generated using a randomly selected subset of 75% of the 
records as training data and the remaining 25% for model evaluation (testing data). To 
reduce model overfitting, models were first calibrated by creating 1080 candidate models 
(per species), with parameterizations resulting from the combinations of 18 regularization 
multipliers (β: 0.5–8.0), 15 feature classes (i.e., combinations of linear, quadratic, product, 
and threshold responses), and the four distinct sets of variables (un-correlated variables, 
with and without elevation vs. principal component analysis, with and without elevation). 
The models for each species were selected based on their significance according to the fol-
lowing parameters: partial ROC test (with E = 5%, 500 iterations, and 50% of data for boot-
strapping; see Peterson et al. 2008), omission rates lower than a previously defined error rate 
(E = 5%; Anderson et  al. 2003), and the lowest Akaike information criterion value (Mus-
carella et al. 2014; Merow et al. 2014), in that order. The chosen predictors and parameter 
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settings were used to create final models with 10 replicates by bootstrap, cloglog outputs 
(Phillips et al. 2017), and transferred to present and future global environmental scenarios 
(see below). Final model projections were created allowing “unconstrained extrapolation” 
and “extrapolation by clamping” in Maxent (Elith et al. 2011; Merow et al. 2014). All mod-
eling processes were performed using the “kuenm” R package (Cobos et al. 2019).

After all, models were generated; the distribution maps for each species under each 
climate scenario (current vs. future [see below]) were created. To do that, median val-
ues across replicates were calculated to summarize model predictions (Campbell et  al. 
2015). Then, the logistic values of suitability were converted from each model into a pres-
ence–absence map by setting a decision threshold equal to the tenth percentile training 
presence, which reduces commission errors (areas of over-prediction; Liu et al. 2013). For 
all plant species, models were calibrated using the available data for their entire current 
range and then cropped to the approximate geographic extent of Mexico.

2.3  Future climate change and dispersal scenarios

The potential distribution areas for individual species and hummingbird-plant assemblages 
were predicted for the years 2040, 2060, and 2080. Variables for future climate projections 
were based on the Coupled Model Intercomparison Project 6 (CMIP6; Stoerk et al. 2018). 
From the CMIP6, five general circulation models (CanESM5, MIROC6, BCC-CSM2-
MR, CNRM-CM6-1, and IPSL-CM6A-LR) and an intermediate Shared Socio-economic 
Pathway scenario (i.e., SSP3 7.0) that assumes a high greenhouse gas emission and low 
climate change mitigation policies (Riahi et al. 2017) were selected. These general circula-
tion models were selected based on: (1) the results obtained from GCM compareR’s web 
application (Fajardo et al. 2020) adopting the “storyline” approach (Shepherd et al. 2018), 
as implemented by Prieto-Torres et al. (2021), and (2) the demonstrated improvements in 
the estimation of zonal-mean atmospheric fields, equatorial ocean subsurface fields, pre-
cipitation values, and the simulation of El Niño-Southern Oscillation in the Americas (e.g., 
Zelinka et al. 2020; Boucher et al. 2020).

For each species, the future (years 2040, 2060, and 2080) geographic distribution was 
obtained by manually overlaying the binary projections from the five global climate mod-
els, allotting “presence” to a pixel where most of the predictive models coincided (i.e., 
suitable in three or more general circulation models). Then, the loss and gain of suitable 
habitats were calculated by comparing the geographic projections of niche models in cur-
rent and future scenarios. The comparisons were categorized as follows: (a) when current 
and future areas were suitable, these were defined as stable suitable areas; (b) when the 
current was suitable and the future not suitable, loss of suitable areas was defined; and (c) 
when the current was not suitable and the future was suitable, gains of suitable areas were 
identified. These areas of stability, gain, and loss were calculated (in  km2) for all species 
under two different dispersion scenarios: “contiguous dispersion” vs. “non-dispersion.” In 
the contiguous dispersion scenario, it is assumed that species would be able to disperse 
through continuous habitat but not jump over barriers (i.e., all the cells with suitable condi-
tions within “M” in the future are considered part of its future distribution range). In the 
non-dispersion scenario, species are assumed to be unable to disperse at all (i.e., only cells 
that are occupied in the present can be occupied in the future). The “non-dispersion” sce-
nario only allows for decreases in the distributional range in response to GCC; therefore, 
it is the most “unfavorable” for the species (see Prieto-Torres et  al. 2021). All Ecologi-
cal Niche Modelling processing was performed using the “maptools” (Bivand et al. 2016), 
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“raster” (Hijmans et al. 2015), and “LetsR” (Vilela and Villalobos 2016) R packages. For 
each dispersal assumption scenario, a Kruskal–Wallis test was performed to determine 
whether species’ vulnerability to GCC (change in range size) differed between habitat gen-
eralists and habitat specialists (see Online Resource 2).

2.4  Model uncertainty

Mobility-oriented parity was implemented using the “ntbox” R package (Osorio-Olvera et al. 
2020) to measure the risk of strict extrapolation into future species’ models resulting from pro-
jections to non-analogous conditions. The MOP consists of measuring the similarity between 
the closest 10% of the environmental conditions of the calibration area to each environmen-
tal condition in the area of transference (see Owens et al. 2013; Alkishe et al. 2017). Areas of 
projection with values of similarity of zero indicate higher uncertainty, as suitability in those 
regions derives from model extrapolation only, and caution is required when interpreting the 
likelihood of species presence in such areas (Alkishe et al. 2017). Binary maps of MOP results 
were generated considering only areas with zero similarity as strict extrapolation areas.

2.5  Spatio‑temporal patterns of species co‑distribution

To identify the spatial patterns for hummingbird-plant assemblages, we first constructed a 
site × species presence–absence matrix (PAM) for each climate scenario and dispersal abil-
ity assumption by overlaying the estimated distribution of each species on an equal-area 
grid of 5 × 5  km2 spatial resolution. Then, the areas of high/low expected hummingbird-
plant richness were identified employing a color gradient with four equal intervals over-
lapping the two PAMs (hummingbirds vs. plants). Using “tempbetagrid” functions for R 
(kindly provided by José Hidasi-Neto; available at: http:// rfunc tions. blogs pot. com/), the 
temporal beta diversities between the present and future scenarios of each cell (i.e., spe-
cies turnover from present to future) were calculated. Subsequently, to assess the potential 
modification in co-occurrence patterns across time, the geographic patterns between each 
endemic hummingbird and the plants it feeds on were compared, considering only the spe-
cies that are known to interact in the present. This allows the identification of potential dis-
ruptions of important ecological associations between taxa under future climate scenarios.

2.6  Ecological co‑occurrence networks

To analyze the impacts of GCC on the structure of hummingbird-plant co-occurrence 
networks in Mexico, we built additional PAMs of co-occurrences between endemic 
hummingbirds and the plants they use as nectar resources for each of the biogeographi-
cal provinces identified across the country (Morrone 2014) based on information gath-
ered from specialized literature and online databases. To avoid statistical problems 
due to low sample size, all provinces where less than three hummingbird species and 
three plant species occurred in the current scenario were eliminated from the analyses. 
This resulted in comparisons in eight biogeographical provinces: Costa del Pacífico, 
Depresión del Balsas, Eje Volcánico, Golfo de México, Oaxaca, Sierra Madre del Sur, 
Sierra Madre Occidental, and Sierra Madre Oriental (Fig. 1).

In sum, we built 56 binary co-occurrence networks for current and future scenarios 
(A = i x j), where hummingbirds (i) were represented as rows and plants (j) as columns. 

http://rfunctions.blogspot.com/
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All interactions between the i hummingbird species and the j plant species were defined by 
Aij = 1, while the interactions that did not occur were coded as zero. Then, using the pack-
age bipartite implemented in R (Dormann et al. 2021), two network descriptors (network 
size and niche overlap) for each hummingbird-plant co-occurrence network per province 
and climate scenario were calculated. The network size was calculated by multiplying the 
number of hummingbird species (i.e., rows) by the number of plant species (i.e., columns). 
Higher network size values indicate more species-rich networks. Niche overlap, based on 
Horn’s similarity index, estimates the degree of similarity among potential hummingbird-
plant interactions; high values indicate high similarity between species trophic niches (i.e., 
low trophic specialization; see Dormann et al. 2009). Finally, generalized linear models 
(GLMs) using Gaussian distribution were fit to test whether the percentage of change in 
the network size and niche overlap values differed among climate and dispersal scenarios. 
When significant differences were observed, contrast analyses were performed using the 
“RT4Bio” R package (Tylianakis et al. 2008; Reis et al. 2015).

3  Results

3.1  Model statistics

All models were statistically significant, meeting AIC criteria, exhibiting significant values 
for the partial ROC test (mean AUC ratio of 1.50; P < 0.05), and low omission error val-
ues (average 3.42 ± 4.20%) for the 10% training presence threshold. Based on these perfor-
mance estimates, our models were better than random and had good discrimination capacity 

Fig. 1  Map of the current endemic hummingbird-plant richness co-occurrence patterns across Mexico. The 
color gradient represents species richness patterns, with areas in dark red showing overlap of the maximum 
richness values for both hummingbird and plant species. Numbers in the map correspond to biogeographi-
cal provinces considered in this study: (1) Costa del Pacífico, (2) Depresión del Balsas, (3) Eje Volcánico, 
(4) Golfo de México, (5) Oaxaca, (6) Sierra Madre del Sur, (7) Sierra Madre Occidental, and (8) Sierra 
Madre Oriental. The picture in the map depicts the interaction between the hummingbird Eupherusa cyano-
phrys and the plant Justicia aurea  (Source: Arizmendi and Berlanga 2014)
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in recovering the ecological niches for each species. The environmental variables that were 
most frequently used (≥ 55% of the cases) for model construction were Bio 15, Bio 03 (iso-
thermality), and Bio 02 (mean diurnal range). However, according to the Jackknife test and 
contributing variables test by MaxEnt, the most important variables on average for hum-
mingbirds were bio 12 (35.8%) and bio 14 (precipitation of driest month; 36.53%); while 
for plant species, the variables bio 01 (28.13%), bio 04 (temperature seasonality; 24.53%), 
and elevation (24.15%) were the ones that most contributed into the model. For performance 
values and parameter settings chosen for each species, see Online Resource 2.

3.2  Current species richness and co‑distribution patterns in Mexico

Overall, the number of hummingbirds per site (pixel) varied from 1 to 6 species (mean 
values of 1.86 ± 1.09 spp.), and plant species richness varied from 1 to 72 species (mean 
18.72 ± 15.88 spp.). For both hummingbirds and plants, current hotspots (i.e., sites [pixels] 
whose species richness exceeded half of the maximum values observed) are located mainly 
in the states of Oaxaca, Guerrero, and Chiapas (Fig. 1). Hummingbird species were asso-
ciated with between six (Pampa excellens) and 42 plant species (for Phaeoptila sordida), 
with an average of 13 ± 10.33 plant species per hummingbird. Plant species interacted with 
an average of 1.32 ± 0.74 hummingbird species. Our distributional model estimates showed 
hummingbird-plant spatial coincidence values averaging 62.1 ± 28.9%  km2 under the cur-
rent scenario, ranging from 44.3 ± 38.5% (Basilinna xantusii) to 84.3 ± 12.9% (P. excel-
lens). The hummingbird-plant network analysis showed values, on average, of 0.32 ± 0.10 
and 397.13 ± 331.04 for the niche overlap and network size, respectively.

3.3  Impacts of future climate change on species range patterns

Our results suggest that GCC will potentially lead to an important modification in both 
individual species’ ranges and overall species richness patterns for Mexican endemic hum-
mingbirds and their associated plants in the future (see Online Resource 3). In general, 
future scenarios were similar in their qualitative predictive patterns, although the pessi-
mistic and unfavorable scenarios (i.e., SSP3 7.0 and non-dispersal ability) predicted larger 
decreases. When assuming a contiguous dispersion scenario, GCC could produce a range 
expansion for 53.9% of hummingbird species (on average from 33.8 ± 23.5% [2040’s] 
to 83.8 ± 65.6% [2080’s]) and 45.7% of plants (25.5 ± 29.3% [2040’s] to 70.5 ± 87.9% 
[2080’s]). Under the non-dispersion scenario, range reductions were the most plausi-
ble response for both hummingbird species (on average from − 11.8 ± 11.8% [2040’s] 
to − 32.9 ± 26.9% [2080’s]) and plants (from − 17.6 ± 16.4% [2040’s] to − 23.7 ± 23.5% 
[2080’s]). These unfavorable scenarios predict that 69.2% of hummingbirds and 62.0% 
of plants might undergo range size reductions of ≥ 10% in future scenarios. This general 
reduction in the species’ distributional ranges is related to changes in climate-suitability 
(on average 0.02 [2040’s]–0.10 [2080’s]) that are currently available. Species’ vulnerabil-
ity to climate change was significantly different across years (χ2 = 47.35; df = 5; P < 0.01) 
and dispersion and non-dispersion scenarios (χ2 = 54.44; df = 5; P < 0.01) when compar-
ing between generalist and specialist taxa (Table 1). Moreover, MOP results indicated that 
strict extrapolative areas occur mostly beyond the potential distributional areas predicted 
by models in the future climates across Mexico (on average < 5% of predicted suitable 
areas match future novel conditions). This shows that non-analogous climate areas were 
not responsible for our results.
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These individual modifications of the species’ distributional ranges could thus lead to 
changes in the spatial patterns of the assemblages across the country (Fig. 2). Overall, the 
temporal beta diversity values ranged from 0.09 (non-dispersion scenarios) to 0.15 (disper-
sion scenarios). On average, richness patterns tended to decrease for both hummingbirds 
(from − 10.5% [dispersion assumption] to − 13.8% [non-dispersion assumption]) and plants 
(from − 2.8% [dispersion] to − 14.3% [non-dispersion]) in the future (see Online Resource 
3). Similarly, hotspot areas were also predicted to decrease in size for hummingbirds (rang-
ing from 19.6% [2040’s dispersion] to 72.6% [2080’s non-dispersion]) and plants (from 
6.8% [2040’s dispersion] to 44.6% [2080’s non-dispersion]). Furthermore, these hotspot 
areas for taxa were predicted to have less overlap in the future scenarios (from 24.2% 
[2040’s dispersion] to 12.4% [2080’s non-dispersion]) than at present (27.3%).

3.4  Hummingbird‑plant co‑occurrence networks

The average number of plant species associated with each hummingbird species 
(13 ± 10.3 spp.) and hummingbird species associated with each plant species (1.3 ± 0.74 
spp.) were predicted to remain similar in the future scenarios. However, the humming-
bird Eupherusa cyanophrys will no longer share distribution with the plant Justicia 
aurea by the 2080’s, even under the favorable dispersion scenarios. Moreover, reduc-
tions of 5.9% [dispersion scenario] to 6.8% [non-dispersion scenario] in the area of co-
occurrence between hummingbirds’ and plants’ geographic were also predicted. Two 
hummingbird species––Eupherusa ridgwayi and Pampa excellens—are expected to be 

Table 1  Predictions of range 
change for 12 Mexican 
endemic hummingbirds 
and their 118 plants used as 
nectar resources considered 
in this study based on their 
habitat specificity (general-
ists vs. specialists). For 
hummingbirds, the species’ 
ecosystem specificity was 
determined from Rodríguez-
Flores et al. (2019), while 
for plans information was 
obtained using the published 
endemicity indexes by 
Linder (2001; i.e. number of 
ecosystems in which a given 
species was reported as 
present by our models)

Mean and standard deviation for observed range change

Dispersion scenario Non-dispersion scenario

Hummingbirds
  2040’s
    Generalists 20.65 ± 34.59%  − 13.51 ± 12.18%
    Specialists 17.94 ± 19.92%  − 3.42 ± 4.83%
  2060’s
    Generalists 16.91 ± 57.02%  − 23.53 ± 19.69%
    Specialists  − 4.79 ± 2.15%  − 10.77 ± 3.21%
  2080’s
    Generalists 14.79 ± 85.53%  − 35.08 ± 28.66%
    Specialists  − 18.57 ± 21.64%  − 22.31 ± 18.61%

Plants
  2040’s
    Generalists 12.41 ± 20.85%  − 20.6 ± 16.62%
    Specialists 20.73 ± 40.62%  − 7.93 ± 11.40%
  2060’s
    Generalists 2.25 ± 33.84%  − 18.95 ± 17.32%
    Specialists 28.28 ± 63.16%  − 12.13 ± 16.89%
  2080’s
    Generalists 1.95 ± 49.96%  − 26.33 ± 23.42%
    Specialists 68.52 ± 132.46%  − 15.40 ± 22.08%
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the most strongly affected, with reductions of > 18% of the spatial coincidence with their 
associated plants under either dispersion scenario. On the contrary, Selasphorus heloisa 
will potentially increase (on average > 4%) the proportional area of co-occurrence with 
its associated plants.

We observed differences between the current and future scenarios when analyzing the 
percentage change in niche overlap and network size (Fig. 3; GLM: all P-values < 0.05). 
The hummingbird-plant co-occurrence network analyses for the future showed an 
increase in size values under both dispersion scenarios (410.4 ± 368.7 [non-dispersion 
scenario] and 604 ± 308.1 [dispersion scenario]). On the contrary, niche overlap values 
did not change in the non-dispersion scenarios (Horn’s index: 0.32 ± 0.1) but decreased 
(Horn’s index: 0.27 ± 0.07) under the dispersion scenario. Overall, the following pat-
terns emerged from our projections: (1) changes in network size will be largest in the 
year 2040 under the dispersion scenarios (F = 2.97, P = 0.02); (2) changes to niche over-
lap were higher under all future scenarios that assumed dispersion (F = 4.20, P < 0.01); 
and (3) the provinces most affected by this change will be Oaxaca (for both niche over-
lap [21.8% of change observed] and network size [147.0% of change]), Sierra Madre del 
Sur (niche overlap [20.6% of change] and network size [32.6% of change]), and Sierra 
Madre Oriental (for network size [111.9% of change]) (Table 2).

4  Discussion

Several studies have investigated the potential impacts of climate variations on animal–plant 
networks, mainly for insects and host species or plants (see Schweiger et al. 2008; Gorostiague 
et al. 2018). Fewer studies have addressed how GCC could affect interspecific relationships 
among vertebrates, with the exception of frugivorous birds, carnivorous mammals, and pol-
linator-bats (e.g., Pandey and Papeş 2018; Scully et al. 2018; Nowak et al. 2019; Corro et al. 

Fig. 2  Spatio-temporal patterns for beta diversities of Mexican endemic hummingbird and plant species 
projected onto future climate scenarios (years 2040, 2060, and 2080) under an intermediate Shared Socio-
economic Pathway scenario (i.e., SSP3 7.0) and assumption of dispersion for taxa. Maps of temporal beta 
diversity show the dissimilarity/similarity values for communities between the current and future scenarios 
within each cell; maps of turnover/nestedness indicate whether estimated temporal beta diversity values are 
more related to changes in species composition or to species losses/gains
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2021). Although there is still debate about the link between co-occurrence data and species’ 
interactions (see Jordano 2016b; Blanchet et al. 2020; Chávez-González et al. 2020), it is a tru-
ism of ecology that species must co-occur to directly interact. From this perspective, changes 
in the co-occurrence networks will probably have variable effects depending on the species, 
but for hummingbirds and their plants, important negative effects seem likely in the future. 
Our results show that endemic hummingbirds and plants are likely to undergo changes that are 
not uniform and differ among groups of species across Mexico in the future.

These results are in agreement with other studies in Mexico, suggesting that the esti-
mated patterns of change for biota are attributed to the expected increase in the average 
temperature and decrease in annual precipitation (see Cuervo-Robayo et al. 2020). This is of 
major concern since range reductions will probably affect the physiological responses and 
activity patterns of individual species and population dynamics, increasing the species’ vul-
nerability to global extinction (Tylianakis et al. 2008; Sonne et al. 2022), especially if spe-
cies are not capable of quickly adapting to new environmental conditions. In fact, although 
upslope shifts have been predicted for hummingbird and plant species in the future (Buer-
mann et al. 2011; Crimmins et al. 2011; Graham et al. 2017; Correa-Lima et al. 2019), many 
studies reported declines in wing-loading capacity and flight-limited performance traits for 
hummingbirds at higher altitudes along elevational gradients (Altshuler et al. 2004; Correa-
Lima et al. 2019). From this perspective, more studies analyzing the ability of these taxa to 
rapidly adapt or move into new areas are encouraged (see Sousa et al. 2021).

On the other hand, climate-driven range shifts may cause modifications in the co-
occurrence patterns of taxa and on communities’ structure through species’ reshuffling 

Fig. 3  Summary of patterns of change observed in network size a, c and niche overlap b, d in the hum-
mingbird-plant co-occurrence network under future climates, considering an intermediate Shared Socio-
economic Pathway scenario (i.e., SSP3 7.0) and two assumptions of dispersion for taxa: contiguous 
dispersion d vs. non-dispersion scenarios (nd). Red letters indicate statistical differences (GLM: all P-val-
ues < 0.05) between scenarios
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(see Lovejoy and Hannah 2019; Sonne et al. 2022). The spatial mismatches between taxa 
observed here suggest potential changes in the availability of mutualist partners that could 
lead to the decoupling of the pollination interaction, with detrimental effects for ecosys-
tems functioning (Visser and Both 2005; Hegland et al. 2009; Correa-Lima et al. 2019).

Moreover, estimations could be more pessimistic considering that plant phenology is 
frequently impacted by changes in climate (Ponti and Sannolo 2022), which could impact 
the animals that utilize them. For instance, desynchronization of the flowering period of 
plants with the activity patterns of pollinators can affect population dynamics and repro-
ductive success for both hummingbirds and plants (e.g., Correa-Lima et al. 2019; Ponti and 
Sannolo 2022). In fact, it is well known that the flowering times of early-flowering plants 
appear to be changing more quickly in response to warming temperatures than late-flower-
ing plants, while late-flowering plants are more susceptible to frost at high elevations (Phil-
lips et al. 2018; Powers et al. 2022). Such changes might impact survivorship and nesting 
success in hummingbirds, particularly for altitudinal and latitudinal migratory species that 
depend on the availability of floral resources along their migratory route and will not be 
able to adjust their arrival to their breeding grounds (McKinney et al. 2012; López-Segovi-
ano et al. 2018; Ponti and Sannolo 2022).

Reduced floral resources for pollinators could have detrimental impacts on ecosystems 
because many species will not be able to complete their life cycles in the future (Scaven 
and Rafferty 2013; Takkis et  al. 2018). In the case of highly specialized hummingbird-
plant relationships, it is unlikely that other animals would take over pollination if hum-
mingbirds are absent (Linhart and Feinsinger 1980), increasing the co-extinction risk for 
species (see Sonne et al. 2022). Nonetheless, hummingbird-plant networks are known to 
be highly dynamic, with species turnover and rewiring (not evaluated here) acting as the 
primary drivers of spatio-temporal changes in the composition of interactions. It is there-
fore possible that network plasticity could mitigate the effects of GCC scenarios on plant 
reproduction and hummingbirds’ food resources (Poisot et al. 2012; CaraDonna et al. 2017; 
Correa-Lima et al. 2019; Chávez-González et al. 2020). However, this issue remains poorly 
studied.

Here, predicted species turnover patterns and changes of network size/niche overlap val-
ues suggest that several species will probably not be able to colonize novel areas in the 
future. The factors that influence a species’ potential to establish and survive in new areas 
are difficult to predict, so these results should be interpreted with caution. However, there 
is evidence that new assemblages could form in locations that are currently at the extreme 
ends of the environmental gradient, like dry regions and high-elevation zones (Graham 
et al. 2017). The formation of new assemblages could change not only the identity of spe-
cies in the network but also network properties such as nestedness and specialization (see 
Dormann et  al. 2009). This is relevant because small-range species are typically habitat 
specialists (Sonne et al. 2016), so they may not be able to colonize new areas or persist in 
novel conditions in the near future (Broennimann et al. 2006).

Past and contemporary climates play an important role in determining specialization on 
mutualistic systems (Dalsgaard et al. 2011). Temperate hummingbird-plant networks were 
less specialized than tropical networks (measured with network-level contemporary spe-
cialization, Blüthgen et al. 2006), and this pattern was tightly linked to species-poor net-
works, low contemporary precipitation, and high quaternary climate-change velocity. This 
climatic scenario favored low biotic specialization and local adaptations in North Ameri-
can hummingbird-plant communities (Dalsgaard et al. 2011). Due to the predominance of 
generalist hummingbird clades (Bees and Emeralds) in North America and hummingbird 
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communities’ ability to colonize new areas and access different floral resources (Rod-
ríguez-Flores et  al. 2019), we initially expected an uneven replacement of specialists by 
generalists under future climate change. However, we found lower values of niche over-
lap in future scenarios that assume species will be able to disperse, suggesting a tendency 
toward network specialization rather than generalization. Specialized network structures 
may mitigate the effect of coextinctions, as there is little overlap between species’ forag-
ing niches, so species are more vulnerable to the loss of their mutualistic partners than to 
the loss of other species’ partners (Sonne et  al. 2022). Although changes in community 
structures due to climate change might favor these patterns, it is important to highlight 
that this work includes only a small subset of co-occurrence networks, since only endemic 
hummingbird species were studied. Thus, future research incorporating all Mexican hum-
mingbirds and their associated plants is needed.

Whether GCC will affect ecosystem functioning depends on how interactions among 
species are affected (Hegland et  al. 2009), it is important to highlight that communities, 
where niche overlap and competition are high, tend to be more unstable and less resilient 
to change (Pastore et al. 2021; Sonne et al. 2022), though colonization by generalist spe-
cies could compensate for local extinctions to some extent. From this perspective, special 
attention must be paid to the provinces of Oaxaca, Sierra Madre del Sur, and Sierra Madre 
Oriental (Table 2). According to our results, they are expected to be the most affected prov-
inces in the future by GCC. However, these regions are considered hotspot areas for both 
hummingbird and plant species, at the same time as being high-priority conservation areas 
for hummingbirds under climate and land-use changes (see Prieto-Torres et al. 2021). We 
therefore argue that it is important to include relevant biotic interactions in the prediction 
of GGC impacts in order to increase the accuracy of model forecasts. We also recommend 
additional fieldwork to test the projections based on our results to obtain reliable knowl-
edge of both species and assemblage responses to future environmental scenarios.

While this study is the first approach for understanding hummingbird-plant co-occur-
rence patterns in the face of global changes, future research incorporating more network 
metrics and relevant ecological information such as phenology, morphology (body size, 
beak length, and curvature, corolla length and curvature) and a hummingbird and floral 
abundances is needed. Also, further analyses incorporating other factors that influence 
species co-occurrences at fine scales, such as land-use change, are critical, because cir-
cumstantial evidence suggests that hummingbird-pollinator losses due to deforestation 
intensification are already happening (Infante et  al. 2020b). In sum, the main lesson 
from this study is that dedicating more land per se to conservation will not guarantee 
the medium and long-term conservation of biodiversity and important ecosystem ser-
vices like pollination. It is imperative that policy makers promote new policies that take 
into account species interactions, and our results constitute a valuable guide for using 
scientific evidence of which species and areas require attention to achieve more efficient 
conservation planning in Mexico.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10584- 022- 03447-3.
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