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high-altitude ecosystems: a case study with Tibetan argali
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Abstract Models of the distribution of rare and endangered species are important tools

for their monitoring and management. Presence data used to build up distribution models

can be based on simple random sampling, but this for patchy distributed species results in

small number of presences and therefore low precision. Convenience sampling, either

based on easily accessible units or a priori knowledge of the species habitat but with no

known probability of sampling each unit, is likely to result in biased estimates. Stratified

random sampling, with strata defined using habitat suitability models [estimated in the

resource selection functions (RSFs) framework] is a promising approach for improving the

precision of model parameters. We used this approach to sample the Tibetan argali (Ovis
ammon hodgsoni) in Indian Transhimalaya in order to estimate their distribution and to test

if it can lead to a significant reduction in survey effort compared to random sampling. We

first used an initial sample of argali feeding sites in 2005 and 2006 based on a priori

selected vantage points and survey transects. This initial sample was used to build up an

initial distribution model. The spatial predictions based on estimated RSFs were then used

to define three strata of the study area. The strata were randomly sampled in 2007. As

expected, much more presences per hour were obtained in the high quality strata compared

to the low quality strata—1.33 obs/h vs. 0.080/h. Furthermore the best models selected on

the basis of the prospective sample differed from those using the first a priori sample,

suggesting bias in the initial sampling effort. The method therefore has significant

implications for decreasing sampling effort in terms of sampling time in the field, espe-

cially when dealing with rare species, and removing initial sampling bias.
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Introduction

Developing effective methods for identifying factors shaping the distribution and abun-

dance of rare species is of prime concern for conservation (Thompson 2004; Guisan et al.

2006). Crucial objective is to obtain an accurate estimate of use for a given level of total

survey effort, or to achieve a desired level of precision with minimal effort (Mackenzie and

Royle 2005). Accuracy means low bias and high precision—the former is usually achieved

using some form of random sampling (e.g. Yoccoz et al. 2001; Williams et al. 2002).

Simple random sampling, however, often leads to too few observations of rare, patchy

species (Edwards et al. 2005). This prevents robust analyses (Green and Young 1993;

Edwards et al. 2004) e.g. for use in explanatory or predictive models of suitable habitat or

spatial distribution (Hill and Keddy 1992; Wiser et al. 1998). Convenience sampling may

result into more observations but, because units are selected a priori with unknown

selection probability, is likely to lead to biased models. Stratified random sampling has

therefore been recommended as a way to improve precision (e.g. Williams et al. 2002).

An efficient approach to define strata is through predictive habitat distribution or eco-

logical niche modelling (Guisan and Zimmermann 2000; Peterson 2001). These models

statistically relate the geographic distribution of the species to their environment by esti-

mating the effects of biotic and abiotic factors. These models have already been used in

turn to sample rare lichen and plant species (Edwards et al. 2005; Guisan et al. 2006).

Guisan et al. (2006) recommended also an iterative approach based on model-fitting and

new sampling based on previous model. Studies focusing on animals have used concepts of

resource selection (Manly et al. 1993; Schaefer and Messier 1995; Boyce et al. 2002;

Walker et al. 2007). The units selected by animals are conceived as resources and predictor

variables associated with these resource units may be elevation, forage quality/quantity,

predation, competition, and disturbance. A resource selection function (RSF) is a model

that yields values proportional to the probability of use of a resource unit (Manly et al.

1993). Thus, a proportional probability of use of the given habitat or resource can be

estimated through RSF which can be used to stratify the sampling area. This sampling

approach is therefore model-based in the sense that strata are defined on the basis of an

RSF, but the sampling itself follows the rules of probability sampling with known prob-

abilities of sampling study units (Yoccoz et al. 2001).

Many rare and endangered species such as the snow leopard (Uncia uncia), Tibetan

argali (Ovis ammon hodgsoni), Tibetan antelope (Pantholops hodgsonii) and Tibetan

gazelle (Procapra picticaudata) inhabit the remote regions of the Indian Transhimalayas

and Tibetan plateau (Schaller 1977; 1998). There is an urgent need to assess the status of

these species, but the regions were little explored by biologists until recently. Most of the

available information is based on visual surveys in the existing and proposed reserves

(Schaller 1977; Schaller and Gu 1994; Chundawat and Qureshi 1999; Harris et al. 1999;

Bhatnagar and Wangchuk 2001; Harris and Loggers 2004; Harris et al. 2005). These

surveys do not provide reliable estimates of population distribution. However, broad scale

distribution maps have been prepared based on those surveys (Jackson and Hunter 1996;

Shackleton 1997; Schaller 1998; Chundawat and Qureshi 1999; Harris et al. 2005) and

provide an opportunity to focus sampling effort so as to refine the estimated distribution
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within the broader population range. This can be achieved by understanding the funda-

mental ecological requirements based on environmental characteristics of known

occurrence sites (Kadmon and Heller 1998; Peterson et al. 1999).

We used the model-based sampling approach to analyse distribution of the Tibetan

argali, a species with a patchy distribution over the Tibetan plateau (Schaller 1998;

Bhatnagar and Wangchuk 2001; Harris et al. 2005). More specifically, we used resource

selection functions to direct a stratified random sampling of the study area to improve the

sampling of argali. We assessed particularly by how much the number of observations per

unit effort was increased in high vs low intensity of use strata.

Materials and methods

Study area

The study area, known as Tso Kar basin, (c. 650 km2) is situated in the Changthang region

of Ladakh, India (32�150N, 78�000E)(Fig. 1). The altitude ranges from 4,500 to 6,371 m

(Table 1). The area is comprised of rolling hills that enclose a basin and two lakes, a

smaller freshwater lake (4 km2) and a larger salt water lake (16 km2). The high altitude

cold desert ecosystems climate has temperatures oscillating from -40�C (Min. winter) to

25�C (Max. summer) and a mean annual precipitation of about 200 mm (Rawat and

Adhikari 2005). The alpine and desert steppe vegetation is mainly composed of grasses

(Poaceae), sedges (Cyperaceae), and short dicotyledonous forbs and shrubs (Rawat and

Adhikari 2005). About 150 argali are believed to inhabit the basin region. Other wild

ungulates found in the region include a population of over 300 kiangs (Equus kiang), and

50 blue sheep or bharal (Pseudois naur). About 18,000 livestock comprised of sheep,

goats, yaks and horses use the area in winter. The key predator for the wildlife and

livestock is the Tibetan wolf (Canis lupus chanco), which is found in small numbers. Snow

leopard and lynx (Lynx lynx) are also present.

Implementation of iterative approach

The approach is described in Fig. 2. The initial sampling surveys were conducted during the

summers 2005–2006 using predetermined vantage points and direct observations of feeding

sites used by argali (sample I). The feeding sites were visited and geographic coordinates

were recorded using GPS (position accuracy—up to 3 ± 1.5 m). The 80 observations made

in 2005–2006 were used as the training data. The availability points were randomly sampled

using Hawth’s tools in Spatial ArcGIS program (ESRI Inc.). We used Use-Availability

design (Johnson et al. 2006) to estimate Resource Selection Functions (RSFs) (Fig. 3a). We

then categorized the predictions into 3 strata based on the RSF values (range 0–0.99) as

lowest (0–0.2), medium (0.21–0.4) and highest (0.41–0.99) suitability (Fig. 3b). The strata

were defined in order to achieve a compromise between a not too wide range of suitability

and not too large difference in area. The lowest, medium and highest strata covered 68.6,

18.5 and 12.8% of the total area, respectively. As one of our goals here was to assess the

effort needed to achieve a given number of observations, the number of transects was larger

in the lowest stratum. Accordingly we randomly located 15, 5 and 4 transects in the lowest,

medium and highest strata, respectively. We visited these transects in the field on a random

basis and ensured that all transects were repeated five times during the sampling season.

New occurrences, when found were recorded using GPS.
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Fig. 1 Study area showing the range of altitude along with main water bodies

Table 1 Environmental predictor variables used in sampling and RSF modelling

Variable Description Observed range
in ‘use’ dataset

Altitude Calculated from the digital elevation model 4,633–5,573 m

NDVI Estimated using Landsat ETM (30 m res.) satellite imagery as—

ndvi ¼ IRðband4Þ�Rðband3Þ
IRðband4ÞþRðband3Þ

-0.14–0.04

Northness Calculated from the digital elevation model, transformed
to northness—cosine (aspect)

-1–1

Ruggedness
(SARI)

Slope Aspect Ruggedness Index¼ SD of slope�variety of aspect
SD of slopeþvariety of aspect

� 1.04–4.71

Slope Calculated from the digital elevation model 0.84–29.71�
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Measurement of effort and sampling output

Initially (for sample I), we spent about 20 min at each of the vantage points sampled. In total

we surveyed 13 vantage points. Each of the 13 vantage points was sampled 12 times during

the sampling season with a radius up to 5 km. Total time spent sampling was estimated as the

sum of minutes spent sampling at each vantage point. The total output for each survey point

was converted to number of observations per hour and hours spent per observation.

Fig. 2 Process flowchart for RSF based stratified random sampling used for sampling argali habitat
selection (modified from Guisan et al. 2006)
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For stratified random sampling along transects (sample II), the effort was measured as

time taken to walk each transect multiplied by the number of times each transect was

walked. We tried to maintain the same speed for each transect walk so that the effort was

not confounded with terrain difficulty. Total time spent in sampling each stratum was

estimated as sum of the time spent in all transects in the strata.

Spatial information

All the spatial data was handled in ArcGIS version 9 (ESRI) with the spatial analyst

extension. Digital elevation models (DEMs) were obtained from Shuttle Radar Topogra-

phy Mission (SRTM, 90 m) data. We downscaled the DEM to 30 m as finer resolution

DEM was not available for the study area. To ensure that the spatial information was not

lost by downscaling, we compared the values of the variables extracted using 90 m DEM

to the 30 m downscaled DEM and evaluated the differences and used them only when they

were not significant.

Environmental variables

We developed a set of five environmental variables (Table 1) related to terrain and veg-

etation. Altitude, slope, and aspect were extracted from DEM. Aspect was converted into a

continuous variable as northness—cosine(aspect) representing a north–south exposure

gradient (Guisan et al. 1999), whose values varied from -1 (south) to 1 (north).

Fig. 3 a Spatial predictions from model I used to stratify the area based on habitat suitability, estimated
using Resource Selection Function (RSF), b Strata classified for sampling with survey transects, c Spatial
predictions from model II based on augmented dataset (sample II)
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Ruggedness was estimated as Slope and Aspect ruggedness index (SARI) (Nellemann and

Fry 1995; Danks and Klein 2002; Jepsen et al. 2005). SARI combines the attributes of

slope and terrain heterogeneity to give high index values where the terrain is simulta-

neously rugged (heterogeneous) and sloping. We used slope and aspect raster grids

extracted from the DEM. We calculated slope heterogeneity as the standard deviation (SD)

of slope (SLSD) in a circular moving window with radius s = 900 m (radius selected

based on minimum distance of flight by argali). The aspect grid was binned into groups of

45 (0–45�, 45–90� etc.) yielding a total of 8 aspect bins. Aspect heterogeneity was cal-

culated as the number of different aspect bins found within the circular moving window

(ASPVAR). We calculated SARI as (SLSDs * ASPVARs)/(SLSDs ? ASPVARs) follow-

ing Nellemann and Fry (1995). We used normalized difference vegetation index (NDVI;

Pettorelli et al. 2005) as the index of greenness due to non availability of high quality

vegetation maps. NDVI was calculated as the difference between the red and infra red

channels divided by the sum of the same two channels. NDVI was calculated from a

Landsat image from August 20, 2002.

Statistical analysis

We used logistic regression models, assuming a Bernoulli distribution for the response

variable and a logit link (Venables and Ripley 1999) to derive resource selection functions

(RSFs). RSFs provide estimates of relative probability of use of a given unit, which can be

interpreted as a measure of habitat suitability (Boyce et al. 2002). Different designs exist

for estimating RSFs, and we used use-availability design because true absence is difficult

to establish (Boyce et al. 2002). Note that availability in RSFs corresponds to pseudo-

absence in niche models (e.g. Engler et al. 2004). Johnson et al. (2006) have shown that in

the case of use-available data, logistic regression provides correct estimates of the

regression coefficients defining the habitat suitability/RSF, but that the intercept and

therefore unconditional habitat use are not estimable without additional information on

sampling intensity. We generated random points for availability (160 in 2005–2006 and

259 in 2007). In 2005–2006, as the vantage points did not cover the low altitude areas and

argali generally do not use low flat areas, available points were restricted to slopes[5� and

altitude\5,400 m. In 2007, the whole area (except[5,400 m) was considered as available

and we did not stratify the random sampling as the number of transects sampled was

approximately proportional to area of strata. Presence was coded as 1 and availability as 0.

Logistic regression models were fitted in R (R Development Core Team 2008) and all

combinations of variables were assessed as no subset could be chosen a priori. Model

selection was performed using the Akaike’s Information Criterion corrected for small

sample size (AICc), and AICc weights (Burnham and Anderson 2004). We assessed the

influence of the number of availability points on model selection by sub sampling the

availability points. We used a random subsample (without replacement) made of half of the

availability points, and calculated the AICc for the five top models and 1,000 sub samples.

We used the average differences in AICc as a measure of the reliability of model selection.

Non-linear relationships were assessed using partial residuals and were found to be ade-

quately described using second-order polynomials. Models containing quadratic terms

without linear terms were discarded. Note that because of constraints in the sampling

design (repeated visits of the same points or transects), we could expect some dependency

in the observations. However, extensive movements of argali and the large distances

between points of observation and argali locations made this dependency undetectable in

the datasets (strong dependency would result in overdispersion). We nevertheless used a
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bootstrap procedure for clustered data, the cluster boostrap (see Field and Welsh 2007 for

discussion). We implemented the bootstrap in two parts: (1) vantage points (2005–2006) or

transects (2007) were resampled with replacement (i.e. not individual observations but the

observation clusters were resampled), and (2) availability points were sampled with

replacement. We generated 2,000 datasets and used 2.5–97.5% percentiles to estimate 95%

confidence intervals. We assessed the goodness of fit (GOF) of full models for data set 1

and 2 using the deviance and the le Cessie–van Houwelingen normal test z-statistic (le

Cessie and van Houwelingen 1991) implemented in Design library for R (Harrell 2001).

Spatial predictions were prepared using the model coefficients generated for the best

models selected using AICc. The variable importance was assessed using the sum of AICc

weights for the model including this variable (Anderson et al. 2001). The predictive

performance of models was evaluated using Boyce’s index (Boyce et al. 2002). We

allocated the data randomly into cross validation groups (4 for the initial dataset, 5 for the

augmented dataset; the difference is due to the different number of observations). Each

model was then developed iteratively by using 3 (resp. 4) of the 4 (resp. 5) cross-validation

groups and the predictions were evaluated using the remaining group. We used logistic

regression models to train our model iteratively on four of the five data sets. We estimated

the parameters of variables in full models. Model performance was evaluated by dividing

map predictions into RSF bins and comparing the frequencies of argali use sites (adjusted

for bin area) within each bin with bin rank. A Spearman-rank correlation (rs) between area-

adjusted frequency of cross-validation points within individual RSF bins and the bin rank

was calculated for each cross-validated model rs (Boyce et al. 2002). Area-adjusted fre-

quencies in this case were simply the frequency of cross-validated use locations with a bin

adjusted (divided) by the area of that range of RSF scores available across the landscape.

Due to limited sample size in the cross-validated groups (n = 26), the total number of bins

was 6. A good predictive model is expected to have an increasing area adjusted frequency

of argali use sites in higher bins and hence a significant (P \ 0.05) and positive rs.

Results

The logistic regression models selected according to their AICc weights are presented in

Table 2 and parameter estimates for the full and best models are presented in Table 3. Both

full models fitted the data (model I, Le Cessie’s test: z = 0.17, P = 0.86, Deviance =

233.38, d.f = 231; model II—Le Cessie’s test: z = -2.25, P = 0.02, Deviance = 293.7,

d.f. = 379; the negative z value and the low deviance indicate no overdispersion). The

number and sub sampling of availability points did not influence the order of the selected

models as the average difference in AICc based on sub sampled datasets had a similar order

to the one obtained from the full datasets (sample I: observed differences/average differences

in AICc between best model and next 4 best models: 0.77/0.52; 0.79/0.34; 1.23/0.37; 1.54/

0.30; augmented dataset/sample II: 0.32/-0.17; 1.60/0.33; 1.64/0.85; 2.09/1.85). The best

model I based on the sample I (Table 2), indicated that altitude, slope, NDVI and ruggedness

(SARI) were the most important variables determining habitat selection by argali. However,

when making spatial predictions we dropped slope as it had a lower importance than other

variables and slope and ruggedness might have indicated similar predation risk factors.

Results from the model II based on sample II indicate that altitude, slope, northness and

NDVI were the most important variables, but ruggedness was not important (Table 2).

According to best model I, argali selected areas in a range of altitude, neither very high nor

very low (second order term for altitude; note that available elevations were already fairly
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high ([ 4,200 m) and below the vegetation limit at about 5,200 m). Similar was the case

with slope, argali seemed to select intermediate slopes (second order term for slope). NDVI

and ruggedness (SARI) also contribute to the habitat selection. Non linear affect of NDVI

indicated again a preference for a restricted range of NDVI values.

The spatial predictions (RSF, 0–0.99) from the best model I based on variables altitude,

altitude2, NDVI and ruggedness (SARI) predicted about 12.8% of the study area as high

suitability (RSF, 0.4–0.99), 18.5% area of medium suitability (RSF, 0.2–0.4) and 68.6%

area of low suitability (RSF, 0–0.2) (Fig. 3b). The K fold cross validation of model I

(Fig. 4) gave an average Spearman rank correlation rs = 0.94 between RSF bin ranks and

Table 3 A Parameter estimates with SE for the full models estimated using initial dataset (sample I) and
augmented dataset (sample II). Full models are given as they are directly comparable. B Parameter esti-
mates, SE and 95% CI for the best model according to AICc for the initial data set. Median estimate and
95% CI based on blocked bootstrap are also given. C Same as B but for the augmented dataset

A Sample I (2005–2006) Sample II (2005–2006 ? 2007)

Variables Estimate SE Estimate SE

Intercept 0.065 0.259 1.48 0.245

Altitude -1.56 0.445 -0.784 0.321

Altitude2 -1.73 0.494 -2.17 0.431

NDVI -0.664 0.318 -0.987 0.290

NDVI2 0.127 0.106 0.141 0.064

Northness -0.018 0.232 -0.112 0.216

Ruggedness 0.461 0.175 -0.012 0.197

Ruggedness2 -0.051 0.149 -0.232 0.167

Slope 0.265 0.224 -0.023 0.254

Slope2 -0.436 0.230 -1.96 0.331

B GLM estimate (SE) GLM 95% CI Bootstrap median estimate Bootstrap 95% CI

Intercept 0.059 (0.238) [- 0.406; 0.530] 0.052 [-0.611; 0.637]

Altitude -1.65 (0.441) [- 2.60; 0.863] -1.73 [-3.07; -0.776]

Altitude2 -1.67 (0.480) [- 2.69; -0.808] -1.77 [-3.29; -0.867]

NDVI -0.390 (0.228) [- 0.886; 0.026] -0.398 [- 1.32; 0.102]

Ruggedness 0.455 (0.172) [0.128; 0.806] 0.479 [- 0.002; 0.948]

Slope 0.266 (0.222) [- 0.169; 0.709] 0.284 [- 0.438; 0.946]

Slope2 -0.434 (0.230) [- 0.906; -0.0003] -0.478 [- 1.06; -0.037]

C GLM estimate (SE) GLM 95% CI Bootstrap median estimate Bootstrap 95% CI

Intercept 1.46 (0.239) [1.01; 1.95] 1.51 [0.894; 2.19]

Altitude -0.717 (0.330) [- 1.42; -0.112] -0.792 [- 2.12; -0.095]

Altitude2 -2.35 (0.418) [- 3.24; -1.60] -2.49 [- 4.40; -1.30]]

NDVI -0.916 (0.275) [- 1.46; -0.376] -0.969 [- 1.84; -0.269}

NDVI2 0.131 (0.061) [- 0.051; 0.234] 0.130 [- 0.404; 0.312]

Northness -0.395 (0.205) [- 0.801; 0.006] -0.414 [- 0.861; 0.005]

Slope -0.041 (0.255) [- 0.559; 0.448] -0.063 [- 0.814; 0.529]

Slope2 -2.03 (0.334) [- 2.73; -1.43] -2.10 [- 2.94; -1.54]

Biodivers Conserv

123



area adjusted frequencies for individual and average model sets. An average p value was

0.021 (Group 1 = 0.03, 2 = 0.017, 3 = 0.003, 4 = 0.033). The cross validation of the

model II (Fig. 4) gave an average rs = 0.94 between RSF bin ranks and area adjusted

frequencies for individual and average model sets and average P values equal to 0.019

(Group 1 = 0.0028, 2 = 0.017, 3 = 0.0028, 4 = 0.017, 5 = 0.058) (Fig. 4).

Area adjusted frequencies displayed significant positive rank values across RSF bins for

model I and II. model II was somewhat more significant on average (Fig. 4). All individual

model sets demonstrated significant Spearman’s correlations, indicating good model per-

formance. model II appears to be more consistent across all RSF bins than model I (Fig. 4),

with both low frequency in lower bins and high frequency in higher bins. However, the

main result is that both models have similar predictive power.

A total of 13 vantage points were used for sampling during the initial surveys (sample

I), the observations which formed the basis of model I. The total sampling output or

efficiency (Table 4) could be quantified as hours per observation or observations per hour.

For the former the initial sampling was estimated to be 1.97 ± 0.41 h/obs and 1.92 ±

0.39 obs/h for the years 2005 and 2006 respectively. The stratified random prospective

sampling significantly enhanced sampling efficiency in the best stratum. The time spent

sampling the highest probability stratum was 0.74 ± 0.059 h/obs relative to 4.51 ±

0.89 h/obs in the lowest probability stratum (Table 4). Even the medium stratum resulted

in lower number of hours needed per observation (1.52 ± 0.35). An area-weighted average

would have resulted in 3.47 h/obs, a higher value than in 2005/6, most likely because

vantage points were located in better habitats. Therefore, compared to the use of random or

a priori vantage points, stratified random sampling with a higher sampling intensity in the

Fig. 4 Area adjusted frequency of categories (bins) of RSF scores for observed locations for argali for
models I and II. Spearman rank correlations between the area adjusted frequencies and bin ranks are
presented in parenthesis. Frequency values for individual cross validation sets (model 1: groups = 4 and
model 2: groups = 5) are depicted with unique symbols
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highest probability stratum would result in an effort between 2 and 3 times lower per

observation. In terms of number of observations per hour, the difference is a factor of 16

(1.33 vs. 0.08 obs/h). Given that all strata need to be sampled, the difference in overall

effort would not be as large, but still quite substantial.

Discussion

We present the first predictive fine scale model of habitat suitability for Tibetan argali in a

Transhimalayan area using an iterative process based on sampling strata defined by an

initial RSF model (model I) and fitting a new model based on an augmented data set

(model II) (Fig. 3c). Survey sites added after stratification of the area according to habitat

suitability captured the habitat variation in the survey region better (Edwards et al. 2005;

Guisan et al. 2006).

Altitude, slope, NDVI, and northness emerged as main effects in the best model II.

Argali prefer a range of intermediate altitudes. The lower flat steppes contain higher

biomass but also, high disturbance from people and livestock. On the other hand, at the

upper limit of vegetation disturbance is low but forage is absent. Thus argali may be forced

to use the narrow belt of sparse vegetation in the mountains. The non linear effect of NDVI

was somewhat surprising since one could expect argali to select areas with higher biomass

(at a given altitude). One possible explanation is that vegetation is very sparse in the

narrow elevation band used and vegetation cover does not exceed more than 25% on

average (Rawat and Adhikari 2005). Also, argali may be forced to use higher slopes that do

not contain the highest biomass, but provide a better overview of the area to look for

wolves (Schaller 1998). For such habitats, NDVI may not reflect biomass but rather other

aspects such as soil water content or vegetation stress (Kogan et al. 2004; Hassan et al.

2007). Another explanation could be disturbance due to livestock use of high biomass areas

(Namgail et al. 2006). There is clearly a need for a better understanding of vegetation

indices in high altitude habitats with very low primary productivity (Karnieli et al. 2006).

The best model II obtained with augmented data also presented similar results as model

I but the ruggedness variable was dropped and NDVI2 and northness were included. First,

this could result from removal of sampling bias during the second sampling stage by

Table 4 Total survey effort with characteristics of the sampled strata

Period RSF class Area of class (%) Observations (%) Effort

Obs/h h/obs*

2007

High 0.4–0.99 12.8 50 1.33 ± 0.125 0.74 ± 0.059

Medium 0.2–0.4 18.5 38 0.807 ± 0.166 1.52 ± 0.35

Low 0–0.2 68.6 12 0.0798 ± 0.101 4.51 ± 0.89

2006 0.740 ± 0.123 1.92 ± 0.39

2005 0.730 ± 0.130 1.97 ± 0.41

Sampling in years 2005 and 2006 was conducted from 13 vantage points and 2007 survey was based on
stratified random sampling

Values represent mean ± SE

* Note that E[h/obs] = 1/E[obs/h]
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adoption of a stratified random sampling. This concerns both availability (flat areas were

not considered as available in 2005–2006) and use. The results of the second model

confirmed which one among slope and ruggedness was more important. The model change

could also be due to different habitat selection between years. Habitat selection is scale

sensitive (Manly et al. 1993) on both spatial and temporal scales (Johnson 1980; Boyce

2006). Boyce (2006) argued that different habitats might be selected in different years, and

different RSFs might apply for different years. Even if the years sampled here were not

characterized by large climatic differences, this cannot be excluded. To capture such

patterns spanning multiple years, sampling must be on a temporal scale of sufficient

duration to understand the significance of habitat selection that varies through time (Boyce

2006).

The model based prospective sampling resulted in large variation in sampling effi-

ciency. Although, only 16.6% of the total sampling effort was spent sampling the highest

probability stratum, it still contained more than 50% of the observations. The number of

hours spent per observation was seven times less in the high suitability stratum relative to

the lower suitability strata, indicating that if the sampling effort is concentrated on highest

suitability areas, it would save survey effort significantly. It also presents a robust approach

for stratification as it is based on resource selection functions.

An important caveat here is that habitat selection does not necessarily reflect quality of

habitat (van Horne 1983; Johnson and Seip 2008). It describes the current species distri-

bution or the realised niche of the species, which results from competition with livestock,

disturbance, predation and several other biotic and abiotic factors. For example, argali

abandoned their preferred plant communities and moved closer to cliffs with lower veg-

etation cover following the introduction of livestock in the Gya Miru wildlife sanctuary

adjacent to the study area (Namgail et al. 2006).

The purpose of the study was to initiate the iterative approach proposed by Guisan et al.

(2006) with continued improvements over time. Lack of surveys in some habitats and

absence of proper methodology for sparse, mobile, clustered or extremely seasonal pop-

ulations were some of the major reasons identified for failures to successfully survey rare

populations (MacDonald 2004). The model-based sampling approach addresses most of

these issues by providing a standardized method which not only saves survey time but is

also accurate and efficient in identifying the survey areas and thus increasing precision.

When global model precision is the intent of use of predictive models, then sampling

intensity should probably be similar over all habitats (see Hand and Vinciotti 2003). In a

conservation perspective we might focus on the best habitats. Directing the sampling to

ensure inclusion of areas with a higher probability of finding the species is thus a desirable

approach for increasing survey efficiency and reducing sampling costs when dealing with

rare species (Guisan et al. 2006).

The study has potential implications for surveying and monitoring argali populations in

the study area as well as in the other areas where argali are known to occur. Application of

this methodology to the rest of eastern Ladakh would also test the transferability (Randin

et al. 2006) of the RSF-based models of animal species distribution, which is an important

issue to be considered in such approaches. Finally, focusing sampling effort in the higher

probability strata will also be important for obtaining an accurate population size estimate

of this rare species.
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