Leopard population density and home range size in the Mangwe District of Zimbabwe

Study Area: The Ingwezi Game Management Project

Estimating Leopard Density

* In order to set sustainable quotas robust density estimates needed
* Secretive, nocturnal, dangerous
* Camera trapping surveys using capturerecapture sampling \& models
* Trap sites chosen to maximise chance of leopard capture, whilst satisfying assumption that no leopard has zero probability of being photographed
* Use minimum recorded home range size, for this terrain $-10 \mathrm{~km}^{2}$ (female from Matopos NP)

Non-baited Camera Trapping Survey:

* Pair of cameras/10km²
* Two contiguous subsections
* 20 sites in total
* 40 days (20 each)
*Wildview: burst mode, 5 mins. delay, flash, 24 hrs
* Consecutive photos of UnID species considered independent events if >30 min apart
* Resulted in only 6 leopard photos

Baited Camera Trapping Survey:

* Baited with cattle foetuses
* Single camera/10km²
* 20 sites in total, all deployed simultaneously
* 65 days
* Wildview: burst mode, 5 mins. delay, flash, 24 hrs
* Consecutive photos considered independent events if >30min apart
* Resulted in 292 leopard photos

Data analysis: Non-baited

* Effectiveness and completeness as an inventory of mammals in the area:
- only photos of medium \& large mammals (>1 kg)
- compared to available checklists for adjacent areas
* Counted the total number of photos taken per species (n), their percentage contribution (Spp. \%) to total photos, capture frequency (CF) - number of photographs (n)/100 camera days
* Sampling effort required to obtain at least one photo of all species with $95 \% \mathrm{Cl}$:
- evaluated relationship between CF\& the number of days to register each species for the first time
- Tobler et al.'s (2008) binomial model

Data analysis: Baited

* ID individuals from rosette patterns
- created a matrix for all captures and non-captures, number of trapping occasioñs \& site ID
* Capture-recapture analyses:
- Lincoln index
- CAPTURE
- SPACECAP which is a Spatially-Explicit CaptureRecapture (SECR) programme

RESULTS:	Non-baited	Baited
Camera trapping days	800	1320
Total no. of photographs	507	1713
\% Anthropogenic	53%	14.5%
Total mammals	30	23
Small mammals	4	2
Total medium -large mammals out of a possible 37 'known'	$26(70 \%)$	$21(57 \%)$
Total birds	11	13
Total reptiles	1	B
Most common ungulates	Impala Common duiker Klipspringer	Bushpig Common duiker Kudu
Most common carnivores	Brown hyena African wildcat Black-backed jackal	Rusty-spotted genet Honey badger Brown hyena
Less common species photographed	Warthog Caracal Spotted hyena	Serval Caracal Spotted hyena

Results: Non-baited

Results: Non-baited

Sampling effort required

* Based on CF:
- More common species with CF of >2.0
- Less common species CF of 0.6-1.8
- Rare or elusive species CF of <0.6
* Effort required to register the more common species (impala) was 150 camera trapping days
* Less common species (leopard) would require an effort of between 170 to 480 trapping days
* 2400 trapping days required to register at least one photo of the rarer or more elusive species with 95% confidence

Results: Cumulative number of leopard captures

Results: Cumulative number of leopard captures

Results: Leopard densities

* Identified 13 individuals for analysis:
- 8 females ($1:>7 \mathrm{yrs}, 4: 4$-7yrs, 3: 2-4yrs)
- 5 males
(2: 4-7yrs, 2: 2-4yrs, 1: 0-2yrs)
* Lincoln index:
- $n=12.3$ leopards
- Density estimate of 6.1 leopards/ $100 \mathrm{~km}^{2}$
* CAPTURE:
- $n=14 \pm 3.4$ leopards
- Density estimate of $6.5 / 100 \mathrm{~km}^{2}$
- SPACECAP:
- $n=15.2 \pm 1.8$ leopards
- Density estimate 5.12 ± 0.6 leopards $/ 100 \mathrm{~km}^{2}$

Percentage contribution to total photos

Total no. of species recorded

Total bird species

Total carnivore species

Total mammal species

Telemetry

"the process of recording readings or measurements, at or from a distance"

- Home range size
- Density
- Movement patterns

Leopard Female AU 410. 05/08/10. Image MG_2883b. Tooth wear and old damage prior to capture, suggest that this Leopard was well into adult phase (over 6 yrs), even though small in body size. Wear can be seen on upper P4 (1); lower P3 (3) and lower P4 (2); wear of the posterior surface ('serrated edge') of left upper canine C1(4) and tip of the same tooth (5); the older damage to lower C1 tip (6); and older wear of upper I3 (7) support this theory.

3 AWT UHF/GPS collars:

- \log GPS fix 6 times/day, every 4 hours (06:00, 10:00, 14:00, 18:00, 22:00, 02:00)
- upload every 10 minutes for 24 hours

M1: collared for 8 weeks

F1: collared for $151 / 2$ weeks

F2: collared for 11 weeks

Minimum Convex Polygons (MCP) - 100\%
- Male $=231 \mathrm{~km}^{2}$
- Female $1=32 \mathrm{~km}^{2}$
- Female2 $=37 \mathrm{~km}^{2}$

\square *Female 3 = $33 \mathrm{~km}^{2}$

\square *Female $4=9 \mathrm{~km}^{2}$

Kernel Utilisation Distribution 50\% \& 95\%

oMale = 50\%: 72 km² 95\%: 263 km²

OFemale1 = 50\%:11 km² 95\%: $31 \mathrm{~km}^{2}$

OFemale2 = 50\%: $11 \mathrm{~km}^{2}$ 95\%: 45 km²

Range overlap

Male/Female2: 4.6 km² 41% of Female2 core \& 6\% of Male core

Male/Female1: 0.3 km² 3% of Female1 core \& 0.4% of Male core

Female2: entire range within Male's

Female1: 86\% of entire range overlaps Male

Female1/Female2: 2.8 km² 9\% of Female1 range \& 6\% of Female2

Estimated number of mature males in the Marula area:

Based on core Home Range of $72 \mathrm{~km}^{2}$
= 40 males

