

The Rufford Small Grants Foundation

Final Report

Congratulations on the completion of your project that was supported by The Rufford Small Grants Foundation.

We ask all grant recipients to complete a Final Report Form that helps us to gauge the success of our grant giving. We understand that projects often do not follow the predicted course but knowledge of your experiences is valuable to us and others who may be undertaking similar work. Please be as honest as you can in answering the questions — remember that negative experiences are just as valuable as positive ones if they help others to learn from them.

Please complete the form in English and be as clear and concise as you can. We will ask for further information if required. If you have any other materials produced by the project, particularly a few relevant photographs, please send these to us separately.

Please submit your final report to jane@rufford.org.

Thank you for your help.

Josh Cole Grants Director

Grant Recipient Details	
Your name	Jorge Luis Rentería
	Integrated Weed Management In Galapagos – Combining Methods
Project title	To Improve Control of the Invasive Rubus niveus and Leucaena
	Leucochephala.
RSG reference	52.04.08
Reporting period	August 2008 - January 2010
Amount of grant	£4,200
Your email address	jorge.renteria@fcdarwin.org.ec / j.renteria07@imperial.ac.uk
Date of this report	23 January 2010

1. Please indicate the level of achievement of the project's original objectives and include any relevant comments on factors affecting this.

	Not	Partially	Fully	
Objective	achieved	achieved	achieved	Comments
•	acilieveu	acilieveu	X	An average of 1,200 seedlings/m ² of <i>R</i> .
To assess the potential			^	niveus were found in the soil. The
of the degraded areas				
to be restored based on				number of seedlings of the native
the seedbank				species was very low compared to the
				invasive R. niveus. Considering the
				most common native plants of the
				forest, the number of seedlings
				available in the soil did not reach
				20 seedlings/m ² /species. These low
				numbers figures were also found in
				soil samples taken from areas where R.
				nives was not present. So the
				conclusion is that seedling populations
				are generally very low and even more
				so where the <i>R. niveus</i> is found. The
				invasive species is clearly
				outcompeting native species.
Experimental trails to			Х	Five different pre-emergent herbicides
reduce the soil seed			^	(seed herbicides) were tested at
				1 `
banks of the invasive				experimental level to assess the
Rubus niveus and				effectiveness to reduce seed
Leucaena				germination. One seed herbicide was
leucochephala.				99% effective, inhibiting the
				germination of almost all the seeds of
				R. niveus. However, seeds of L.
				leuchocephala showed more
				resistance to the herbicide at the
				concentration used. Control of seed
				germination was approximately 20%
				effective. It may be necessary to
				repeat trials using higher herbicide
				concentrations in order to achieve
				better results in the control of L.
				leucocephala seed germination.
Competition between		Х		Native species showed equal or
the invasive <i>R. niveus</i>				greater tolerance than <i>R. niveus</i> to
and five of the most				stress conditions. There was no
common native plant				significant or obvious difference in the
species of the Scalesia				effect of the different light and water
forest.				treatments on the native vs. the
101030.				invasive species. However when
				plants were growth under favourable
				·
				water and light conditions, R. niveus
				seems to perform better than the

		native plants. These results are not conclusive at this stage. Complementary data we are still awaiting may shed further light on the competitiveness of R. niveus in comparison to that of native species.
Academic training.	X	The information derived from this project will used as part of a PhD thesis at Imperial College in London The project has assisted in the training and skilling of an Ecuadorian volunteer/student from an Ecuadorian University in the field of conservation, invasive species management and habitat restoration. An oral presentation was given at the International Galapagos Science Symposium 2009.
Assisting the managers and local community.	X	Through our interaction with the Charles Darwin Foundation, formal and informal technical advice has been provided to The Galapagos National Park Service on the control of the invasive plant species.

2. Please explain any unforeseen difficulties that arose during the project and how these were tackled (if relevant).

Unexpectedly slow growth and high mortality of seedlings used in the competition trials were a tremendous hurdle. Soil mixture used on pots seemed to be the factor affecting seedlings development and survivorship. Where possible, experiments were repeated using different type of soil.

Site availability for the proposed experiments was an additional barrier to progress. We didn't find adequate sites to carry out all the proposed experiments with the invasive *L. leucocephala*, therefore most of the resources were put on the study of *R. niveus* which is the most pernicious plant invasive species in the Galapagos Islands.

3. Briefly describe the three most important outcomes of your project.

- **a. Understanding the invasion process.** The soil seedbank of *R. niveus* has been confirmed as the main source of reinvasion after control of adult plants.
- **b. Management of the invasive.** A pre-emergent herbicide that may reduce considerably the germination of seeds of *R. niveus* has been identified. This finding could be used as the basis for an alternative control method within an integrated management strategy.
- **c. Habitat restoration.** Control of *R. niveus* in natural areas has to be complemented with the facilitation of native vegetation regeneration. The amount available seeds in the soil and the growth rate of native species are considerably low compared with that of the invasive species. This links in the experiments on competition mentioned above.

4. Briefly describe the involvement of local communities and how they have benefitted from the project (if relevant).

We have worked closely with local farmers, providing them with technical assistance on the control of invasive plant species and the restoration of farms. We have used local people as field assistants and provided some temporal work opportunities.

5. Are there any plans to continue this work?

Yes, this is a 3-year project. We are about to start the second field work season. We expect to carry out a study to assess the impact of *R. niveus* on the composition and structure of the forest. Although the effects of *R. niveus* on the natural communities are evident, there has not been any formal study to identify and quantify such effects.

6. How do you plan to share the results of your work with others?

We have shared our preliminary results, ideas and knowledge through formal and informal communications with National Park Service. Some results of this project will be published in internationally recognized peer-reviewed scientific journals. A short paper was published as part Galapagos Science Symposium 2009: "Towards an optimal management of the invasive *Rubus niveus* for habitat restoration in the Galapagos". Information about this project will be found on the Charles Darwin Foundation web site: http://www.darwinfoundation.org

7. Timescale: Over what period was the RSG used? How does this compare to the anticipated or actual length of the project?

The RSG grant (received 12 August 2008) was used throughout 2008 and 2009. Funding was used to cover flights to the UK from Galapagos, nursery infrastructure development, stipends and accommodation to support an Ecuadorian volunteer, field assistant, transport, and tools/equipment. The grant was for 1 year and we are seeking support from RSG for another year to assess the impact of the invasive *R. niveus* on the natural ecosystem.

8. Budget: Please provide a breakdown of budgeted versus actual expenditure and the reasons for any differences. All figures should be in £ sterling, indicating the local exchange rate used.

Item	Budgeted Amount	Actual Amount	Difference	Comments
International flight UK. Galapagos	1500	1,286	214	Under-spent funds were reallocated to pay for equipment and greenhouses
Transportation	800	393	407	Cost of hiring a taxi to go to the field. Under-spent funds were reallocated to pay for equipment and greenhouses
Student/volunteer	700	3	-1,443	Subsistence and accommodation for volunteer during a period of 6 months.
Temporary field assistant	300	7,14	-414	Cost of labour; it involved hiring a local assistant to help in the field

Tools, equipment and	900	1071	-171	Cost of equipment, instruments
infrastructure				and material to carry out
				experiment. An important
				investment was the building of
				greenhouses which was not
				budgeted.
TOTAL £	4,200	5,607	-1,407	Difference was covered with the
	(Rufford)			financial support of the Charles
				Darwin Foundation

9. Looking ahead, what do you feel are the important next steps?

Future fieldwork is necessary to document the invasion process and the environmental impacts of *R. niveus* on the natural ecosystems of Galapagos. This information will be very useful to develop methodologies to reduce the cost and duration of control projects and perhaps meet the restoration goals.

10. Did you use the RSGF logo in any materials produced in relation to this project? Did the RSGF receive any publicity during the course of your work?

I used RSGF logo in my oral presentation during International Galapagos Science Symposium 2009. The RSGF logo was used in a poster which has been displayed at the Charles Darwin Research Station. It is not possible to use logos in the scientific papers, however the RSGF funding will be acknowledged in any published materials.

11. Any other comments?

Thanks to the financial support from the RSGF, It has been possible to me to carry out my PhD research project in the Galapagos Island. I feel so proud to be able to help with the conservation of this natural paradise.