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1. Introduction 

Climate change is one of the main ecological factors influencing the geographical distribution 
of species (Agbo et al., 2019; Zhang et al., 2019). It inevitably impacts ecosystem structure 
and function, affecting species richness and composition (Thapa et al., 2018), as well as tree 
phenology and physiology (Thuiller et al., 2005). Among the most affected species is Afzelia 
africana (Saliou et al., 2015; Adjahossou et al., 2016), an endangered species that deserves 
special conservation attention. However, conservation efforts need to be multiplied in order to 
save it from extinction. Intensifying conservation efforts requires a good understanding of the 
habitats favorable to the conservation of the species. This will make it possible to know the 
locations suitable for its silviculture (Fandohan et al., 2013) and also to make decisions on 
where conservation efforts should be concentrated for optimal impact, and this in a context of 
limited financial resources (Adjahossou et al., 2016). The aim of our work is to assess habitats 
favorable to the conservation of A. africana in Benin.  It is a component of the “Improvement 
of the conservation status of Afzelia africana in Benin” project funded by Rufford Foundation. 

 

2. Methodology  

2.1. Data collection   

Two types of data were used to model the spatial distribution of A. africana. These are 
occurrence and environmental data. 

Occurrence data  

Presence points for A. africana were obtained from fieldwork using GPS (Global Positioning 
System). In addition to field points, points over the last ten years were extracted from the Global 
Biodiversity Information Facility (GBIF: www.gbif.org). In order to achieve excellent accuracy 
in the modelling results, it is necessary to extend the collection of presence points outside the 
study area (Fitzpatrick & Hargrove, 2009). However, we have completed occurrences from 
countries in the region based on the distribution observed on GBIF (accessed on 18th February 
2024; Fig. 1). In total, 466 occurrences of A. africana were used to run the distribution model. 

http://www.gbif.org/
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Fig. 1. Map of the study area showing the geographical distribution of A. africana in Benin 

and the sub-region. 

Environmental data 

Bioclimatic variables, soil variable and elevation (altitude) are the environmental data used. 
Bioclimatic and elevation variables were extracted from the WorldClim platform 
(https://www.worldclim.org/data/index.html, accessed on 30th May 2024). There are 19 
variables relating to humidity and temperature (Table 1). The soil variable comes from the 
World Soil Database platform (https://iiasa.ac.at/models-tools-data/hwsd, accessed on 30 May 
2024). These variables have a resolution of 30 seconds (~1km2). Bioclimatic variables are 
recognized for their ecological impact on species distribution. They provide information on 
mean annual and seasonal conditions, as well as extreme and intra-annual values (Booth et 
al., 2014). However, some of the 19 bioclimatic variables show discontinuities in America and 
sub-Saharan Africa (Escobar et al., 2014; Booth, 2022; Biaou et al., 2023). This concerns 
mean temperature of wettest quarter (bio 8), mean temperature of driest quarter (bio 9), 
precipitation of warmest quarter (bio 18) and precipitation of coldest quarter (bio 19). These 
variables were removed from our models to limit bias. 

For the projections, the HadGEM3-GC3.1 global circulation model from the Met Office Centre's 
family of climate prediction models for the 2041-2060 horizon was used with two climate 
scenarios: the optimistic scenario (SSP2-4.5: 
https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31-
LL/ssp245/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp245_2041-2060.tif) and the pessimistic 
scenario (SSP5-8.5: https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31 
LL/ssp585/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp585_2041-2060.tif). This is the third 
version of the HadGEM configuration, integrating components of the NEMO ocean model and 
the CICE sea ice model, with a climate sensitivity of 5.4°C per CO2 doubling. This configuration 
also includes a land system with dynamic vegetation, ocean biology and atmospheric 
chemistry (Ridley et al., 2018). In addition, SSPs (Shared Socioeconomic Pathways) are based 
on five narratives describing alternative socioeconomic pathways, including sustainable 

https://www.worldclim.org/data/index.html
https://iiasa.ac.at/models-tools-data/hwsd
https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31-LL/ssp245/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp245_2041-2060.tif
https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31-LL/ssp245/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp245_2041-2060.tif
https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31%20LL/ssp585/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp585_2041-2060.tif
https://geodata.ucdavis.edu/cmip6/30s/HadGEM3-GC31%20LL/ssp585/wc2.1_30s_bioc_HadGEM3-GC31-LL_ssp585_2041-2060.tif
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development, regional rivalry, inequality, fossil-fueled development and intermediate 
development (Nazarenko et al., 2022).  

                Table 1. Environmental variables used 

Code Variable description Units 

Bio 01 Annual mean temperature °C 
Bio 02 Mean diurnal range °C 
Bio 03 Isothermality - 
Bio 04 Temperature seasonality °C 
Bio 05 Maximum temperature of warmest month °C 
Bio 06 Minimum temperature of coldest month °C 
Bio 07 Temperature annual range °C 
Bio 08 Mean temperature of wettest quarter °C 
Bio 09 Mean temperature of driest quarter °C 
Bio 10 Mean temperature of warmest quarter °C 
Bio 11 Mean temperature of coldest quarter °C 
Bio 12 Annual precipitation mm 
Bio 13 Precipitation of wettest month mm 
Bio 14 Precipitation of driest month mm 
Bio 15 Precipitation seasonality - 
Bio 16 Precipitation of wettest quarter mm 
Bio 17 Precipitation of driest quarter mm 
Bio 18 Precipitation of warmest quarter mm 
Bio 19 Precipitation of coldest quarter mm 
Elev Elevation m 
Soil Soil - 

 

2.2. Data analysis  

Occurrence data  

Thanks to ArcGIS 10.7 mapping software, the Wallace reproductive modeling interphase 
(#WallaceEcoMod), and the Geocat tool (http://geocat.kew.org/editor), occurrence data have 
been cleaned at temporal, spatial or geographical scale and at taxonomic scale. Only 
occurrence data from the GBIF database with the essential attributes of an occurrence are 
retained. These are data with the specific epithet well precise (taxonomic analysis) and 
informed, the date of collection well informed (temporal analysis), the method of collection 
informed (only points resulting from human observation are considered). Also, only 
occurrences with geographic references (decimal longitude and latitude coordinates) are 
considered (spatial analysis). Outliers and duplicates were removed from the database. Field 
data and GBIF platform data were cleaned and combined in semi-colon separator format 
(csv.). Thanks to the "sp Thin" function in the "shinny" package, the density of points of 
presence in the Wallace interphase was regulated to a minimum distance of 1km. 

Environmental data 

The environmental variables obtained in the WorldClim platform were sliced according to the 
mask (geographical space in which the species is currently observed). These variables were 
then aligned and converted into ASCII (.ascii) format, ready for use in the Maxent algorithm.   

Model conception 

The A. africana distribution model was run in the Maxent algorithm, which is par excellence 
designed to elaborate distribution models based on observations of species presence only 
(Merow et al., 2013; Phillips et al., 2017; Alsamadisi et al., 2020). In addition, these authors 
point out the following advantages of MaxEnt (Maximum Entropy): the possibility of using 

http://geocat.kew.org/editor
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qualitative data, the ability to eliminate sampling bias and avoid overestimation of results, and 
the use of even small quantities of data. 

The converted bioclimatic variables were integrated into the model, where a cross-validation 
was carried out according to AUC (Area Under the Curve) metric values, in order to select the 
variables that best fit the species distribution. The Jackknife test was used to assess the 
individual contribution of each environmental variable to the model on the one hand, and to 
provide indications of how the model works when each variable is excluded from the model on 
the other (Phillips et al., 2006). On the basis of these variables, potential present distribution 
maps were obtained and projected into the future according to two scenarios, SSP2-4.5 and 
SSP5-8.5, for the horizon 2041-2060.  

The model was run five (05) times using the ''logistic'' approach as output format. The value 
''10 percentile training presence logistic threshold'' was used as the probability threshold to 
define levels of habitat suitability for the species (Liu et al., 2013). The probability of occurrence 
below the threshold is considered unfavorable habitat for the species, and that above the 
threshold corresponds to more favorable habitat for the species. Model exactitude was 
assessed using True Skill Statistics (TSS; Allouche et al., 2006). The cross-validate method 
was used to calculate AUCs (Hao et al., 2020). Twenty-five (25%) of the species observation 
points were used to test the model and seventy-five (75%) of the points to calibrate the model. 
AUC values of 0.5-0.7 correspond to low accuracy, those of 0.7-0.89 to good accuracy and 
those above 0.9 to high accuracy (Hao et al., 2019). 

Three classes (Unfavorable, Relatively favorable and Highly favorable) were selected for the 
classification of the species' habitats based on the threshold value of 10% (Peterson, 2011; 
Liu et al., 2013; Adjahossou et al., 2016).  For the quantification of A. africana habitats, the 
outputs of the model designed via the Maxent algorithm were submitted and classified in 
ArcGIS 10.7. mapping software through the "Reclassify" function of the ''spatial analysis tools'' 
extension. For this purpose, only the ''Highly Favorable'' class is considered as favorable 
habitat and consequently the ''Unfavorable'' and ''Relatively Favorable'' classes are merged 
and considered as unfavorable habitats for this species. 

 

3. Results  

3.1. Importance of environmental variables and model validation   

Five environmental variables were selected according to the importance of their permutation 
and their contribution to model development. These are bio7 (temperature annual range), 
bio12 (annual precipitation), bio4 (temperature seasonality), bio15 (precipitation seasonality), 
bio14 (precipitation of driest month). The variables that contributed most to model development 
when used in isolation in the model are bio12, bio4, bio7, bio15 and bio14 respectively (Fig. 
2). 

Model performance was assessed by the area under the curve (AUC) value, the TSS value 
and the partial ROC statistical test. The AUC value resulting from the Maxent model run is 
0.87. This threshold suggests a very good performance of the Maxent algorithm in capturing 
variations in environmental data (Fig. 3). Similarly, the TSS value obtained was 0.49, allowing 
us to conclude that the model performed better than a random model. In addition, the result of 
the partial ROC test indicates that the model worked significantly with a normal distribution of 
partial AUC (Fig. 4). 
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Fig. 2. Result of the Jackknife test on the contribution of variables to the model. 

 
Fig. 3. Mean area under the curve (AUC) for A. africana. 

 

 
Fig. 4. Result of the Partial AUC distribution obtained from the Partial ROC test. 



7 
 

3.2. Current distribution of habitats favorable to the conservation of A. africana  

The areas that are currently most favorable for the conservation of A. africana in Benin 
represent 56.97% of the country's national area (Table 2). These favorable habitats are 
distributed over the country's three climatic zones, with a high concentration observed in the 
Sudano-Guinean transition Zone (SGZ; 7◦30' - 9◦45'N) and the Sudanian Zone (SZ; 9◦45' - 
12◦25'N) (Fig. 5). Thus, in the SGZ, the most favorable protected areas for the conservation of 
A. africana are:  Gazetted Forest (GF) of Wari-Maro, Ouémé Supérieur, Béléfoungou, Sérou, 
Pénessoulou, Bassila, Dogo, Kétou, Atchérigbé, Dan and the Périmètre de Reboisement des 
Tanékas. As for the SZ, we have: GF of Goungoun, Guéné, the Sota, Ouénou Bénou, Alibori 
Supérieur, Mékrou, Kouandé and Birni. Some portions of Benin's two National Parks (Pendjari 
and W) are also more favorable to the species' conservation. 

 

 Fig. 5. Current spatial distribution of A. africana habitas in Benin. On the figure, GZ = 
Guinean Zone, SGZ = Sudano-Guinean Zone, SZ= Sudanian Zone.  

3.3. Potential future distribution of habitats favorable to the conservation of A. 
africana  

The model predicts a significant reduction in areas currently favorable for A. africana 
conservation, with an estimated loss of 16.22% under the optimistic scenario (SSP2-4.5) and 
16.32% under the pessimistic scenario (SSP5-8.5; Table 2). This reduction by 2041-2060 
horizon is more pronounced with the pessimistic scenario (-22.29%), characterized by an 
expansion of relatively favorable areas and a reduction of highly favorable areas in the SZ and 
SGZ (Fig. 6). Whatever the scenario, the GFs of Wari-Maro, Ouémé Supérieur and N'dali 
remain the most favorable for future A. africana conservation in the SGZ, while those of 
Mékrou, Kouandé and Birni, and some portions of Alibori Supérieur and W Park, are the most 
favorable in the SGZ.   
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Table 2. Impact of climate change on habitats favorable to the conservation of A. africana. 

 

Favorable areas Unfavorable areas  Total area 

Surface Trend  Surface Trend   Trend 

(Km²)  (%)  (Km²) (%)   (Km²) 

Présent  
65384,54 
(56,97 %) 

- -  
49378,46 
(43,03 %) 

- -   114763 

SSP2-4.5  54711,86 -16,32  60051,13 +21,61   114763 

SSP5-8.5 50807,46 -22,29  63955,53 + 29,52   114763 

 

 
Fig. 6. Prediction of the future distribution of habitats favorable to the conservation of A. 

africana according to the SSP2-4.5 and SSP5-8.5 scenarios. On the figure, GZ = Guinean 
Zone, SGZ = Sudano-Guinean Zone, SZ= Sudanian Zone 

 

4. Conclusion 

The aim of this first intermediary report is to assess the habitats favorable to the conservation 
of A. africana in Benin. The areas that are currently most favorable for the conservation of A. 
africana in Benin represent 56.97% of the country's national area. The model predicts a 
significant reduction in these areas currently favorable for A. africana conservation, with an 
estimated loss of 16.22% under the optimistic scenario (SSP2-4.5) and 16.32% under the 
pessimistic scenario (SSP5-8.5). The second intermediary report presents the impact of 
pastoral livestock on the demographic structure of A. africana populations in the most favorable 
habitats.    
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