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Background 
Encephalartos barteri ssp. barteri is the only gymnosperm known in Benin and endemic 

to West Africa (Benin, Nigeria, Ghana, and Togo) and member of the plants so-called cycads 

which are the most endangered group in the plant kingdom (Brummitt et al. 2015, Forest et 

al. 2018). Encephalartos barteri ssp. barteri is very slow-growing, this means that populations 

take a very long time to recover if adult plants are removed from wild (IUCN, 2010). Like most 

cycads, E. barteri ssp. barteri displays similarities to palms (Elaeis guineensis Jacq.) in its overall 

habit (Hill et al. 2004), so that the latter are often mistaken for the former by local people. 

However, the two groups of plants belong to completely different phyla and are not at all 

closely related (Salas-Leiva et al. 2013). The continuous collection of seeds and seedlings from 

the Wild is unsustainable and is depleting the populations of E. barteri ssp. Barteri in Benin. As 

the results, the species was reported to be vulnerable (VU) at local and global scale (Bösenberg 

2010, IUCN 2010, Hunter 2010, Adomou et al. 2011).  

Seven populations of E. barteri ssp. barteri were reported in Benin (Ekue et al. 2008), 

out of which, four populations (Gangamou, Doh, Igbomakoro and Wannou) occur in 

unprotected areas freely accessible by local community. The unprotected habitat for these 

four populations increases their risk of extinction as most of the threatened African cycad 

species are currently located in unprotected ecosystems (Yessoufou et al. 2016, 2017). Despite 

all this, no tangible conservation actions have been taken to save this species from extinction 

fate in Benin. Thus, we need to act fast and we feel that involving local community through 

increasing awareness level and developing participatory and sustainable conservation actions 

will be the successful conservation steps. 

The continuous collection of seeds and seedlings from the Wild is unsustainable and is 

depleting the populations of E. Barteri. Without any conservation action, E. barteri ssp. barteri 

will run to extinction in the wild. Thus, to save this species from the fate of extinction, we 

propose to contribute to the in-situ conservation and restoration of E. barteri ssp. barteri 

habitats. In a first step, we will use the occurrence data acquired from botanical herbaria 

through previous studies on the species as well as the bioclimatic data (temperature, rainfall, 

and humidity) to model and predict the favourable habitats and distribution of E. barteri ssp. 

barteri in Benin. In a second step, the seven populations of E. barteri spp. barteri previously 

reported as well as the new habitats that will be found from our first objective will be surveyed. 

We will record the population size and abundance of E. barteri ssp. barteri to update 

knowledge and reassess the conservation status of E. barteri ssp. barteri in Benin. In a third 

step, we will collect from local communities the different uses of E. barteri ssp. barteri through 

an ethnobotanical survey. In addition to ethnobotanical survey, direct observed threats on this 

species in the field will also be taken into account in order to formulate sustainable 

conservation strategies. Last but not least, we are planning to involve local community and 

raise their awareness on the uniqueness of E. barteri ssp. barteri in Benin, the importance of 

its conservation. Further, in agreement with the local community, we are going to set up 

several groups of volunteers so called “Encephalartos ambassadors “to monitor the population 

of E. barteri spp. barteri in each village. 



Methodology 

Modelling and predicting the favourable habitats and distribution of E. barteri ssp. 

barteri in Benin 

Study area  

The analysis performed in this study covers the whole of Benin. The country is known to have 

three climatic zones: the Sudanian zone (9°45' to 12°25'N), the Sudano-Guinean zone (7°30' to 

9°45'N) and the Guinean zone (6°25' to 7°30'N). The known populations of Encephalartos 

barteri ssp. barteri occur in all the climatic zones. 

Species occurrence data 
We searched several online biodiversity repositories to gather occurrence data on E. barteri 

including: iNaturalist (www.inaturalist.org), the Global Biodiversity Information Facility (GBIF, 

www.gbif.org) and herbaria. Once downloaded from these databases, the species occurrence 

data went through a cleaning process during which we only kept non-duplicated and 

georeferenced records from material sampling and human observation. In addition to 

downloaded, we explored scientific literature to collect more records on the species. Due to 

the scarcity in the species occurrence points, no spatial thinning was performed on the 

records. The cleaned dataset used to calibrate the model is shown in Figure 1. 

 

http://www.gbif.org/


Figure 1: Occurrence data of Encephalartos barteri in Benin (generated in R packages ggplot2 

(Wickham 2016) 3.4.2 and rnaturalearth 0.3.2) Reference of GBIF Occurrence Download: GBIF.org (6 

October 2022) GBIF Occurrence Download https://doi.org/10.15468/dl.exmv3j. 

 

Figure 2. Favourable habitats and distribution of E. barteri ssp. barteri in Benin 



Environmental predictors 
We obtained 17 bioclimatic variables as estimates of present-time climate from 

WorldClim (Fick and Hijmans 2017) site at high resolution (30 arcsec pixels). We got similar 

resolution elevation data from Wordclim, as there is evidence this variable shapes species 

distribution and differentially influences species phenology which may have significant 

implications. This is particularly true for rare plant species in sensitive mountain ecosystems 

((Adedoja, Kehinde, and Samways 2020; Lannuzel et al. 2021). Plus, we downloaded soil Cation 

Exchange Capacity at pH 7 (CEC) and 5 cm depth from SoilGrids (soilgrids. org - downloaded in 

December 2022), which provides the data at 250 m resolution (Poggio et al. 2021). We chose 

to include CEC in this analysis because it is a chemical soil property, easily available as high-

resolution GIS layer and often used to perform ecological studies in tropical areas (Figueiredo 

et al. 2018; Zuquim et al. 2020; Levis et al. 2017). Cation exchange capacity (CEC) is a measure 

of a soil's ability to hold positively charged ions. It is a property of the soil that is related to the 

clay content and other soil properties. CEC plays a role in several important soil processes, 

including heavy metal removal, nutrient uptake, and species distribution (Shahrokhi-Shahraki 

et al. 2021; Rodrigues et al. 2019; Martel, De Kimpe, and Laverdière 1978). In addition, we 

used Organic Carbon Stock (OCS) from SoilGrids as an indicator of physio-chemical and 

biological properties of soils in the study areas. This data was downloaded at at 250 m 

resolution. Actually, the total organic carbon content in soil serves as a dynamic indicator of 

soil physical quality, allowing for the monitoring of both temporal and spatial variations in soil 

quality (Singh, Khera, and Santra 2012). 

All predictors were prepared as ASCII files and adequately resampled at 1x1 km 

resolution with the R package raster 3.6.20 (Hijmans 2023). Collinearity issue among 

environmental variables can introduce bias in parameter estimation by inflating the variance 

of regression parameters, and can lead to inaccurate choices when selecting relevant 

predictors for models(Mela and Kopalle 2002; Ruffell, Banks-Leite, and Didham 2016). To 

handle this concern, we extracted predictor values at occurrence points and applied the 

variance inflation factor (VIF) function from the SDM package (Naimi and Araújo 2016). This 

allowed us to retain the variables with lower correlation in our models. Additionally, through 

preliminary model runs, we identified the most influential variables among those with lower 

correlation. 

Model calibration and evaluation 
We carried all the process of model fitting and calibration in R software version 3.4.0 (R Core 

Team 2023). We used the SDM package for all analysis in R as it offers flexibility in adjusting 

the predictive performances models. To fit the predictive models of suitable habitats to E. 

barteri we chose algorithms MaxEnt (Phillips, Anderson, and Schapire 2006) as we only have 

the presence data of the species. MaxEnt is one of the top performing machine learning 

algorithms. It is a good choice for this analysis because it is designed to model presence-

background data. It is not a stochastic model (meaning that the results are consistent each 

time the model is run), and it is computationally efficient (Valavi et al. 2022). We fitted models 

to 10000 background points, with each sampling-then-modelling repeated 25 times to account 

for the variability in the selected background samples. Replications were performed using 

three sampling techniques: cross validation, subsampling and bootstrapping. To assess the 



predictive performance, we measured the discrimination ability and reliability of the models 

based one several statistics: the area under the curve (AUC) of the receiver-operating 

characteristics plot (Yackulic et al. 2013), the true skill statistics (TSS)(Allouche, Tsoar, and 

Kadmon 2006). 
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