Project Update: August 2023

Progress during period:

Outreach programmes

The sensitisation of local communities, NGOs and government officials was conducted during the timeframe of project. In the programmes the information about the ecological and economic significance of Bengal monitor lizard (V. bengalensis) was dissipated among the participants through posters, pamphlets and PowerPoint presentations.

The conducted programmes were interactive, and I could record a lot of locally known information regarding monitor lizards. In Terai Arc Landscape, India there is presence of three monitor lizards namely Bengal monitor, yellow monitor and rarely seen desert monitor, the local community has different theory and perception regarding each species. It is very interesting to note that locally juveniles of Bengal monitor have different name, *bis-kopda*, however adult is known as *Goh*.

In between interactive session I tried to impart the conservation status and ecological benefits of Bengal monitor lizard which was positively received by many. Few locals were negating the scientific facts and persistent regarding the misconceptions.

Following are the glimpse of awareness programme conducted:

A. One-Week Special Course in Wildlife Protection, Law and Forensic Science for Officer Trainees of Indian Revenue Service (Customs & Indirect Taxes) Group- 'A', 73rd Batch' (October 2022)

Fig2. Listing the traded item to officials which was confiscated from Southern India.

B. Three-day course on Wildlife Conservation, Identification of Wildlife Part and Forensic Investigation for Customs Officers from National Academy of Customs, Indirect Taxes & Narcotics (NACIN), Jaipur at Wildlife Institute of India, and Dehradun from (December 2022)

Fig3. Explaining the extend of leather industry of monitor lizards.

Fig4. Use of monitor lizard skin for making of musical instrument "Ghummat".

C. Three-day course on Wildlife Conservation, Identification of Wildlife Part and Forensic Investigation for Customs Officers from National Academy of Customs, Indirect Taxes & Narcotics (NACIN), Jaipur at Wildlife Institute of India, and Dehradun from (March 2023).

Fig5. Awareness regarding different extant species of monitor lizard in India.

Fig6. Interactive session with Government officials.

D. Capacity building for Nature guides of Nandhaur Wildlife Sanctuary, Uttarakhand

Fig7. Training session for nature guides of Nandhaur Wildlife sanctuary regarding the ecological benefits of monitor lizards.

E. To **s**tudy the preserved specimen of Monitor lizards visited the reptile collection section at Zoological Survey of India Headquarter Kolkata & Regional center Dehradun.

Fig8. Specimen study at ZSI Dehradun. Fig9. Specimen study at ZSI Kolkata.

F. The frequency of poaching activity of monitor lizard in West Bengal, India is increasing hence officers of Sajnekhali, Sundarban Tiger Reserve, West Bengal requested for the awareness material and workshop in their area hence an awareness programme was conducted with the help of assistants for capacity building (January 2023)

Fig10. Mr. Amrit Balan and Mr. Asim explained the conservation status of monitor lizards in West Bengal

Fig11. Mr. Amrit Balan and Mr. Asim conducting awareness program.

G. Presented ongoing work in 17th Uttarakhand State Science and Technology Congress (2022-23). The congress was a gathering of professors, teachers, NGOs, government officials and students from various backgrounds. It was a podium from where I could showcase the pressing need to understand the pressure of poaching and hunting of monitor lizards while listing the management actions.

Fig12. Explaining the condition of injured yellow monitor lizard. **Fig13**. Elucidating the Conservation status of Bengal monitor lizard.

H. Drawing completion was arranged for school children in the village Nathuakhan, Nainital district of Uttarakhand (April 2023). The students were actively involved in the drawing activities and interested in knowing about the behavior of monitor lizards. Prizes and refreshments were distributed after the completion of the programme. The programme was held to build a sense of awareness about monitors among the students.

Fig14. Participants of drawing competition.

Fig15. Explaining the exploitation scenario of Monitor lizard.

Fig16. Explaining the ecological benefits of Bengal monitor Lizard.

Fig17. Teaching the Key morphological features to identify the monitors.

Fig18. Participants of awareness program

The interactive sessions with children regarding the importance of Bengal monitor lizard in ecosystem and the current threats this animal is facing due to poaching and hunting lead village children to open up regarding amazing information about this lizard. These are following:

- 1. Bengal monitor is majorly confused with chameleon.
- 2. Participants has only heard about the animal and never seen in wild or nearby area.
- 3. They reognise the picture of "Hemipenis" in the poster and explained the presence of that material in forest areas.

Children took me to forest and we searched for the material for hours and I found that locals get confused between hemipenis of monitor lizards with the species of fungus i.e. *Morchella esculenta* which is locally known as *Gucchi*. *Gucchi* is known to be one of the most expensive mushrooms, with only 500gm of it costing up to Rs. 18,000 (\$217). This fungus is costly due to its presence in only wild areas and it cannot be cultivated. It is picked up by locals and dried for longer shelf life and being sold. The dried *Gucchi* looks like hemipenis of Bengal monitor lizard and there is a chance of selling it in the mixed bag of expensive fungus.

Fig19. Morchella esculenta found with the help of children which is being confused with the Hemipenis of monitors

Genetic Sampling

S.no.	ID	State	Latitute	Longitute			
1	UKVR19	Uttarakhand	30.302281	77.955938			
2	UKVR20	Uttarakhand	30.292963	77.953763			
3	UKVR21	Uttarakhand	30.306365	77.952397			
4	UKVR22	Uttarakhand	30.319691	77.930759			
5	UKVR23	Uttarakhand	30.279579	77.973089			
6	UKVR25	Uttarakhand	30.281144	77.974791			
7	UPVR32	Uttar Pradesh	28.490477	80.647514			
8	UPVR33	Uttar Pradesh	28.460769	80.738226			
9	UPVR34	Uttar Pradesh	28.489331	80.646927			
10	BRVR5	Bihar	27.332678	83.981489			
11	BRVR6	Bihar	27.322764	84.013675			
12	BRVR7	Bihar	27.320839	83.964236			

Table 1. Sample location

Fig20. Bengal monitor lizards during field survey.

DNA Extraction:

Tissue collected from individuals was stored in 70% ethanol in field. The samples were chopped finely for lysis procedure followed by extraction through Qiagen Blood and tissue kit. The extracted DNA was then quantified through gel electrophoresis.

Fig21. Gel image of DNA.

PCR amplification:

Mitochondrial gene Cytochrome b (Cyt b) and Cytochrome c oxidase subunit I (COI) were successfully amplified on a few samples.

Fig22. Gel image of amplicons

Sequencing:

The amplicons were then used for sequencing through ABI 3500XL. Electropherograms of few samples are attached below-

UKVR21_P12F_	E11_14																
1	CGALLTGTCT '	CTTATTTCT	GCAGACCTAC	AGAATTETEA	TETACATCAT	CTGAATGCAA	CCCAGACACT	TACATTAAGC	TAAAGECTTC	CTGGATAAAC	GGGCCTCGAT	CCCGCAATCA	ACTAATTAAC	AGCTAGECGE	TEAATECAGA	GAGCTTCTAT	160
161																	320
321						TACCCAAACG									AGCCACCTIA		480
481	GCTGACTATT	CTCTACAAAT	CATAAAGACA	TTGGAACTCT	TTACCTTATT	TTCGGGACTT	GGGCCGGAAT	AATTGGCACA	GCCATAAGCC	TTCTAATCCG	AGCAGAATTA	AGCCAACCCG	GGACTATTTI	· AGGAAATGAT	CAAATTTACA	ATGTTGTAGT	640
641	AACCGCACAT	5CACTTATCA	TAATTTTTTT	TATAGTTATA	CCAATTATAA	TCGGAGGTTT	TGGAAACTGA	TTAGTCCCTC	TAATAATTGG	TGCCCCAGAT	ATGGCCTTCC	CACGAATAAA	CAACATAAGO	TTCTGACTCC	TTCCCCCCTC	ACTTCTTCTT	800
801	CTCCTAGCTT	AGCCTGAGT	CGAAACTGGC	TCTGGAACAG	GATGAACCGT	GTACCCACCT	CTCGCAGGAA	ACATAGCCCA	CGCAGGAGCA	TCAGTTGATT	таасаатттт	CTCCCTTCAC	TTAGCAGGCA	. TITCATCAAT	TCTTGGCGCT	ăttaactita	960
961	TCACCACATG	CATTAACATA	AAGCCTCCCA	CAATAACACA	ATACCACACA	CCATTATTTG	TGTGATCAGT	TTTAATTACC	GCAATTCTTC	TCCTTCTTTC	CCTTCCAGTC	CTCGCAGCAG	GAATCACCAT	GCTCCTTACA	GATEGAAATE	TAAATACTTC	1120
1121	CTITITIGAT	CAGCTGGCG	GAGGAGACCC	AATCCTCTAT	CAACACCTAT	TCTGATTTTT	TGGAČACCCA	GAAGTTTACA	TTCTAATCCT	CCCTGGATTT	GGGAÄTÄTTT	CTCATATTAT	TTECTATTAE	TCAAATAAAA	AAAGAACCAT	TCGGCTAATA	1219
	TGATAGTTTG	GCCATAATA	TCATGACCTA	TAAGTCCTAG	TATGAGACCA	ccacattac g	GATGCTATAG	accttagaac	CAACCGGCCA	TTACGGTCA							
UKVR22_P12F_	F11_17																
1	CATAACTICA	AATTETTTAA	TITCTGCAAG	acctacagaa	CTCTCATCTA	TATCATCTGA	ATGCAACCCA	GAATTTAAAA	TAAGCTAAAG	CCTTCCTGGA	TAGACGGGCC	TEGATECEGE	AATCAACTA	A TTAACAGCTI	GCCACTCAAT	CCAGAGAGCT	160
161	TCTATCCGCT	ICTCCCGTTT	GAAGAAAAAA	AACGGGAGAA	GCCCAGGGGI	AATCCTACCC	AAACGCAGAT	TTGCAGTCTG	TAATTCTGAG	CCATCTGATA	AGGGAGGATI	AACCCCGTAA	GTAAGTTTA	AGCTTACCG	CTACTCGGCO	ACCTTACCTG	320
321	TGATTCGCTG	ACTATTCTCT	ACAAATCATA	AAGACATTGG	AACTETTTAG	CTAATTTTCG	GGACTTGGGC	CGGAATAATI	GGCACAGCCA	TAAGCCTCCT	AATCCGAGCA	GAATTAAGCC	AACCCGGGA	TATTTTAGG	AACGATCAAA	TTTACAATGT	480
481	TETACTANCE	FCACATGC &C			GTTATACCAN	TTATAATTO	AGGETTTEGA	A CTGATTAG			CCAGATATOR						640
641				1.1II										, dullalli	ult. dll		800
801					GAACAGGATG	GAUCGIGIAC				GGAGCATCAG						GGUGUTATTA	960
961	ACTITATCAC	CACATGCATT	AACATAAAGC	CTCCCACAAT	· AACACAATAC	ACACACACCA	TTATTTGTGT	GGTCAGTTTT	AATTACCGCA	ATTCTTCTCC		TCCAGTCCTC	GCAGCAGGA	A TCACCATGCI	CCTTACAGAT	CGAAAATCTA	1120
1121	AAATACTTCC	ITTTTTGATC	CAGCTGGCGG	AGGAGATCCA	ATCCTCTATC	AACACCTATT	CTGATTCTTT	GGACATCCAG	AAGTATATAT	TCTAATCCCT	CCCTGGATTI	GGAATAATTT	CCCATATTT	A TOTOTACTAC	TCAAATAAAA	AAAGAACCAT	1245
	TCGGCTATAT .	AGGATTAGGT	CTGGAGCCAT	ATATCAATTG	GTCTATAAGG	GTCCTAGGTA	TGGGAGGCCC	ACCACTATCA	CTGGCTGGTA	TGGACGGTAG	ACCCAACGGG	GCTTTACCTC	TCACA				
UPVR32_P12	G11_20		III		Lulitat	1 111111	. 601				1 11.00.0						
1	<u>GAATTÄÄCA</u> T	CTTATTTCT	G CAGACCTAC	A GAACTCTCA	Т СТАТАТСАТ	C TGAATGCAA	C CCAGACACT	T TCATTAAGC	T AAAGCCTTC	C TGGATAGAC	G GGCCTCGAT	C CCGCAATCA	A CTAATTAA	CA GCTAGCCAO	T CAATCCAGJ	G AGCTTCTATO	160
161	CGCTTCTCCC	GTTTGAAGA.	а алалаласс	G GAGAAGCCC	A GGGGTAATC	C TACCCAAAC	G CAGATTTGC	A GTCTGTAAT	T CTGAGCCAT	°C TGATAAGGG	A GGATTAACC	C CGTAAGTAA	G TTTACAGC	TT ACCGCCTAC	T CGGCCACCT	T ACCTGTGATI	320
321	CGCTGACTAT	TCTCTACAA	A TCATAAAGA	C ATTGGAACT	т тттасстая	T TITCGGGAC	T TGGGCCGGA	A TAATTGGCA	C AGCCATAAG	C CTCCTAATC	C GAGCAGAAT	T AAGCCAACC	C GGGACTAT	FT TAGGAAACO	а тсалатття	C AATGTTGTAG	480
401	TAACCGCACA	TGCACTTAT	C ATAATTTT	T TTATAGTTA	IT ACCAATTAT	A ATTGGAGGC	T TTGGAAACT	G ATTAGTCCC	т стаатаатт	G GTGCCCCAG	A TATGGCCTT	C CCACGAATA	A ATAACATA	AG CTTCTGACT	с сттесссо	т састтеттет	800
801	TCTCCTAGCT	TCAGCCTGA	G ТСGАААСТG	G CTCTGGAAC	A GGATGGACC	g tgtacccac	C TCTCGCAGG	A AACATAGCC	C ATGCAGGAG	C ATCAGTTGA	ат ттаасаатт	т тетесетте	A CTTAGCAG	SC ATTTCATCS	A TTCTTGGCG	C TATTAACTTI	960
961	ATCACCACAT	GCATTAACA	T AAAGCCTCC	C ACAATAAAC	A CAATACCAC	A CACCATTAT	т тететеетс	a gititaati	A CCGCAATTC	т тетсеттет	T TECETTECA	G TCCTCGCAG	C AGGAATCA	C ATGCTCCTI	A CAGATCGAA	а тстааатаст	1120
1121	TCCTTTTTTG	ATCCAGCTG	C CCGACCAGA	T CCAATCOTO	T ATCACACCT	A TTCTGATTC	T TTGGACATC	C AGAAGTATA	T ATCTATCCT	C COTOGATIT	G GATATITCC	C ATATATCTC	T ACTACTCA	A TAAAACA	A TOGOCTATI	A GATAGTETGA	1207
	GCATAATATC	ATGATCTAT.	A COTTCTAGT	ā tešacēcac	. ACAATTCCT	G TGTAAGACG	T AGACACCAC	g GCTACCTGC	A CCTCAGC								
BRVR6_P12F_E	812_06					~											
1	GGTCGCCATC	ATTATTTCTG	CCARGACCTO	TAGAACTITO	ATCTACATC	CCTGAATGCA	ACCCAGATAT	ACATATTAAG	CTAAAGCCTA	CCCAGGTAAG	CGGGCCTTGA	TCCCGCAATI	AACTAATTA	A CAGCTAGCCO	CCCAAACCAG	AGAGCTTCTA	160
161			AAAACGGGA	GAAGCCCAG	GUTANTICTA		GATTTGCATT		GAGCOGCTGA	TAAGGGAGGT	ACACCTERTA	AGTAGATITA	CARCETACE		CACCTUACC	ATGATCOGOT	320
321			miliii														480
481	GACITICIC	CAUINAULAU	AAAVALAITU	- JIACULIUTA	, conatiff	JUANCI I UAU	CLUUMAIAAI	TOUAALLUUT	AIAAULUITI	. IAAIICOUU	, AUAALIIAU		CLAILLIAG	- ARACUALLA	ATTATAAU	, ICUIAUIDAU	640
1												11 * 2 T 2 2 2 C 2 3					
641	TGCACACGCC	CTCATCATAA		GGTTATACCA	ATCATAATCO	GGGGTTTCGG	AAACTGATTA	GTTCCCCTAA	. TAATCGGCGC		GCCTTCCCAC			C TGACTCCTT	CCCCCTCACT		800
641 801	TGCACACGCC TTAGCCTCGG	CTCATCATAA CCTGAATCGA	AACTEGATES	GGTTATACCA GGAACCGGAT	ATCATAATCO	GGGGTTTCGG	GCAGGAAATA	TAGCCCACG	AGGAATATCA	GTTGACCTGA	GCCTTCCCAC	CCTCCATCTA	GCAGGCATC	C TGACTCCTTO	CCCCCTCACT		800 960
641 801 961	TGCACACGCC TTAGCCTCGG CCACATGCAT	CTGAATCGA CCTGAATCGA CAACATAAAA	AACTEGATCO	GGTTATACCA GGAACCGGAT	CCACACGCCC	CCCGCCCCTC	GATCAGTTCT	AATTACCGCA	AGGAATATCA		CCATTECCAC	CCTCCATCTA		CATCAATTC	CCCCCTCACT CGGCGCCATT		800 960 1120
641 801 961 1121	TECACACGEE TTAGECTEGG CEACATGEAT CTTTGAECET	CTCATCATAA CCTGAATCGA CAACATAAAA GCTGGTGGAG	AACTGGATCC	CONTATACCA COAACCOGAT TAACACAAATA COTTTACCAA	CALCETTI	CCCCCCCCTC CTATTCGTGT GATTCTTTGG	GCAGGAAATA GCAGGAAATA GATCAGTTCT	GTTTACATEC	ACCANTATO	CUCAGACATO CTTGACCTCA TCCTCTCTCTC CGGGATTCGG	GATAATTTCC	GCAGCAGGAA	CCTACTACT	CATCAATTCI	CCCCCTCACT CGGCGCCCATT CGCCACTTAA	AXTITUTATOR	800 960 1120 1196

Fig23. Data Analysis: Ongoing