Assessing the Structural Connectivity of a Biological Corridor for Tiger Movements between National Parks in Bhutan

Letro Jigme Singye Wangchuck National Park

5th Annual Research Symposium & Environmental Fair Bhutan Ecological Society

3rd December 2018

The Presentation Outline

1. Introduction

2. Materials and Methods

3. Results and Discussions

4. Conclusion and Recommendations

1. Introduction

2. Methods

3. Results and Discussions

4. Conclusion and Recommendations

What are the purpose of Bridges?

Taylor et al. 1993; Metzger & Ddcamps 1997

1. Introduction2. Methods3. Results and
Discussions4. Conclusion and
Recommendations

1.2. Global Tiger Conservation

Landscape level approach to Tiger conservation

Wikramanayake et al. 2011

1. Introduction

1.3. Bhutan Conservation Landscape

Bhutan Biological Conservation Complex (B2C2)

Bhutan is a hotspot for wild felid diversity •

Tempa et al. 2013

1. Introduction2. Methods3. Results and
Discussions4. Conclusion and
Recommendations

1.4. Rationale

- 103 tigers,
- 0.46 tigers per 100 km²

BC8

Denser in south/central

• Human-Tiger Conflict – A Threat?

Unknown status of connectivity of the BC8.

DoFPS 2015

1.5. Goal

Assess structural connectivity of Biological Corridor No. 8 (BC8) that connects JSWNP with WCNP for tiger movement.

- ✓ Tiger Habitat use probability in BC8?
- ✓ HTC incidences and people's perceptions?

1 Introduction	2 Methods	3. Results and	4. Conclusion and
	2. Methous	Discussions	Recommendations

2.1. Study Area

- Elevation: 1853 to 4181 m, Temperature 14°C; Rainfall: 1956 mm
 - Cool Temperate Forests
 - Wangdue Phodrang and Trongsa

2. Methods

3. Results and Discussions

4. Conclusion and Recommendations

2.2. Field survey design

- i. Wildlife survey;
- ✤2.5 X 2.5 km grids, 27 grids sampled,
- Camera trapping
- Site A: 14 Cameras
- Site B: 13 Cameras

2.3. Covariates: The landscape structure

Site Covariates: Covariates influencing site occupancy *Ecological covariates:*

- land use types (LU): forest types
- elevation (ELE): m
- aspect (ASP): degree
- slope (SLO): degree
- distance to protected area (PA): m
- distance to the river (RIV): m
 Anthropogenic covariates:
- distance to road (ROA): m
- distance to settlement (SET): m

Survey covariates: Covariates influencing detection

- survey areas (S. area) (site A and site B)
- camera trapping effort (Effort): No of days

2.4. Occupancy modeling

Occupancy modeling of principal prey species

- ✓ presence-absence detection history from sampling periods
- ✓ non-correlated covariates
- ✓ z-standardized values
- ✓ occupancy probability ' ψ ' (psi)
- ✓ the probability of detection 'p'

Mackenzie et al. 2002, 2006

2.4. Occupancy modeling

Single-species single season occupancy modeling

✓ programme PRESENCE

Two-step process

- \checkmark estimate the probability of detection (*p*)
- \checkmark estimate the probability of occurrence (ψ)

The selection of best model

✓ Akaike information criterion (AIC) values

The mean untransformed beta coefficient estimate

- to predict the site occupancy of the species using ArcGIS
- ✓ to measure the degree and direction of the covariate effect on the site-use probability

Hines 2006; Mackenzie et al 2006; Burnham and Anderson 2004.

2.5. Habitat use probability for tiger

Habitat use probability

- ✓ GLM with binomial function
- ✓ presence-absence at sampled sites
- ✓ z-standardized covariates

Maximum likelihood model selection

- ✓ dredge function in R package "MuMIn"
- ✓ Akaike information criterion (AIC) values

The coefficient estimates of various covariates

- ✓ used to generate raster pixels predicting tiger habitat use
- ✓ to measure the degree and direction of the covariate effect on the site-use probability

Discussions 3.1. Occupancy of principal prey species

- ✓ 26 camera traps retrieved
- ✓ total effort of 1080 trap days

3. Results and

- ✓ At least one principal prey species recorded in 17 camera trap locations
- ✓ 368 independent images
- ✓ sambar: 9 locations
- ✓ barking deer:11 locations
- ✓ wild boar:10 locations

3.1. Occupancy of principal prey species

Detection probability models

	Model	AIC	ΔΑΙC	AIC wt	Model	к	-2LogLik
Species					Likelihood		
	p(S. area + Effort)	76.58	0	0.326	1	4	68.58
Sambar	p(Effort)	77.17	0.59	0.239	0.744	2	73.17
	p(S. area)	77.27	0.69	0.228	0.708	3	71.27
	p(.)	77.42	0.84	0.211	0.657	2	73.42
	p(Effort)	88	0	0.40	1	2	84
Barking	p(.)	88.09	0.09	0.38	0.96	2	84.09
deer	p(SA)	89.91	1.91	0.15	0.38	3	83.91
	p(S. area + Effort)	91.85	3.85	0.06	0.15	4	83.85
	p(Effort)	83.24	0	0.533	1	2	79.24
	p(S. area)	84.97	1.73	0.225	0.421	3	78.97
Wild boar	p(S. area + Effort)	85.89	2.65	0.148	0.268	4	77.89
	p(.)	86.58	3.34	0.101	0.188	2	82.58

1. Introduction2. Methods3. Results and
Discussions4. Conclusion and
Recommendations

3.1. Occupancy of principal prey species

A. Occupancy probability of Sambar:

 $(\psi \pm SE): 0.49 \pm 0.03$

Species	Model	AIC	ΔΑΙϹ	AIC wt	Model Likelihood	К	-2LogLik
	ψ (SLO+ASP+SET), p(S. area + Effort)	75.73	0	0.389	1	6	63.73
Sambar	ψ (ELE+ASP), p(S. area + Effort)	76.21	0.48	0.306	0.786	5	66.21
	ψ(ELE, SET), p(S. area + Effort)	76.31	0.58	0.2952	0.7483	5	66.31

Estimates of β -coefficient values

Species	Model	β _{SET} (SE)	β _{ASP} (SE)	β _{SLO} (SE)
Sambar	ψ (SLO+ASP+SET),	0.20 (0.64)	- 0.02 (0.57)	1.28 (0.74)
	p(S. area + Effort)			

3.1. Occupancy of principal prey species

A. Occupancy probability of Sambar:

 ψ siteA (SE) = 0.44 (0.06) ψ siteB (SE) = 0.57(0.07)

1 Introduction	2 Mathada	3. Results and	4. Conclusion and
	Z. Methous	Discussions	Recommendations

3.1. Occupancy of principal prey species

B. Occupancy probability of Barking deer:

 $(\psi \pm SE): 0.52 \pm 0.09$

Species	Model	AIC	ΔΑΙϹ	AIC wt	Model Likelihood	К	-2LogLik
	ψ (ELE+ASP), p (Effort)	83.64	0	0.4388	1	3	77.64
Barking deer	ψ (ELE+ROA), ρ (Effort)	84.48	0.84	0.2883	0.657	3	78.48
	ψ (ELE+RIV), p(Effort)	84.59	0.95	0.2729	0.6219	3	78.59

Estimates of β -coefficient values

Species	Model	β_{ELE} (SE)	β _{ASP} (SE)
Barking	ψ (ELE+ASP), p(Effort)	-1.54 (0.96)	-0.59 (0.58)
deer			

1. Introduction2. Methods3. Results and
Discussions4. Conclusion and
Recommendations

3.1. Occupancy of principal prey species

B. Occupancy probability of Barking deer:

Ν WCNP Site use probability 0.00 - 0.20 Site B 0.20 - 0.40 Site A 0.40 - 0.600.60 - 0.80 0.80 - 1.00 BC 8 Boundary WCNP: Wangchuck Centennial National Park JSWNP JSWNP: Jigme Singye Wangchuck National Park 10 km 5 JSWNP BNG; EPSG: 5266

 ψ siteA (SE) = 0.62 (0.06) ψ siteB (SE) = 0.35(0.07)

1 Introduction	2 Mathada	3. Results and	4. Conclusion and
	Z. Methous	Discussions	Recommendations

3.1. Occupancy of principal prey species

C. Occupancy probability of Wild boar:

 $(\psi \pm SE): 0.45 \pm 0.07$

Species	Model	AIC	ΔΑΙϹ	AIC wt	Model Likelihood	K	-2LogLik
	ψ (ELE+RIV), p (Effort)	72.98	0	0.247	1	3	66.98
Wild boar	ψ (ELE+SLO), p (Effort)	73.17	0.19	0.225	0.909	3	67.17
	ψ (ELE+ROA), p(Effort)	73.6	0.62	0.1814	0.733	3	67.6

Estimates of β -coefficient values

Species	Model	β_{ELE} (SE)	β _{RIV} (SE)
Barking	ψ (ELE+RIV), p(Effort)	-2.64 (1.6)	-0.73 (0.83)
deer			

1. Introduction2. Methods3. Results and
Discussions4. Conclusion and
Recommendations

3.1. Occupancy of principal prey species

C. Occupancy probability of Wild boar:

 ψ siteA (SE) = 0.64(0.09) ψ siteB (SE) = 0.24 (0.08)

3.1. Occupancy of principal prey species

All three species have preference towards lower limit of the elevation.

- Tempa 2017

Easterly and southerly aspects have positive influence to sambar and barking deer occupancy.

- Forsyth et al. 2009

Wild boar prefers forests and shrubs surrounding water holes, swamps, marshes. - Graves 1984

Influence of forest types on species is weaker than elevation, probably attributed to the adaptation of species to wide-ranging vegetation types.

- Timmins et al. 2015, 2016

No strong signature of human disturbance on prey species in Bhutan.

- Tempa 2017

3.1. Occupancy of principal prey species

Occupancy of principal prey species

Occupancy: Accounting imperfect detections and inclusion of covariates
 Karanth et al. 2011

1 Introduction	2 Mathada	3. Results and	4. Conclusion and	
		Discussions	Recommendations	

3.2. Habitat use probability for tiger

Tiger uses BC8

Intercept	ASP	ELE	SLO	f	logLik	AIC。	ΔAIC_{c}	weight
-2.73	-0.02	0.004	-0.23	4	-11.94	33.8	0	0.35
-7.98	-0.01	0.003	-	3	-13.41	33.9	0.13	0.33
-9.25	-	0.002	-	2	-15.19	34.9	1.12	0.20
-6.95	-	0.003	-0.14	3	-14.34	35.8	1.98	0.13

✤ Aspect (ASP), Elevation (ELE) and Slope (SLO) major predictors

Tempa et al. 2017; Sunarto et al. 2012

3.2. Habitat use probability for tiger

Site B have better suitability as compared to site A

Tempa et al. 2017; Linkie et al. 2006

4.1. Conclusion

 The ecological covariates are important predictor than anthropogenic influences.

- Occupancy patterns indicates niche partitioning of species, that enabled better connectivity.
 - Prey occupancy is likely to enhance tiger movement between national parks.

- High incidences of livestock depredation by tiger induces negative attitudes towards tiger conservation.
- Mitigating HTC and increasing awareness programme will strengthen conservation.

4.2. Recommendations

1. Management plan for BC8

2. Habitat improvement and management

3. Safeguarding wildlife through patrolling

4. Mitigating HTC and increasing awareness programme

5. Assessing functional connectivity

Healthy Corridor – A Bridge of Connectivity

References

- DoFPS. 2015. Counting the Tigers in Bhutan: Report on the National Tiger Survey of Bhutan 2014 2015. Department of Forests and Park Services, Thimphu.
- Gurung, B. B. 2008. Ecological and Sociological Aspects of Human-Tiger Conflicts in Chitwan National Park, Nepal:1–159.
- Karanth, K. U., J. D. Nichols, N. S. Kumar, W. A. Link, and J. E. Hines. 2004. Tigers and their prey: Predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences 101:4854–4858.
- MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, L. L. Bailey, and J. E. Hines. 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. MA: Academic Press, Boston
- Metzger, J., and H. Ddcamps. 1997. The structural connectivity threshold: an hypothesis in conservation biology at the landscape scale. Acta Oecologica 18:1–12.
- Taylor, P. D., L. Fahrig, K. Henein, and G. Merriam. 1993. Connectivity is a vital element of landscape structure. Oikos 68:571–573.
- Tempa, T. 2017. The Ecology of Montane Bengal Tigers (Panthera tigris tigris) in the Himalayan Kingdom of Bhutan. University of Montana.
- Thapa, K., and M. J. Kelly. 2016. Prey and tigers on the forgotten trail: high prey occupancy and tiger habitat use reveal the importance of the understudied Churia habitat of Nepal. Biodiversity and Conservation 26:593–616.

Wikramanayake, E. D., E. Dinerstein, J. G. Robinson, U. Karanth, A. Rabinowitz, D. Olson, T. Mathew, P. Hedao, M. Conner, G. Hemley, and D. Bolze. 1998. An Ecology-Based Method for Defining Priorities for Large Mammal Conservation: The Tiger as Case Study. Conservation Biology 12:865–878.

Acknowledgements

2013-08-24 6:05:38 PM M 2/3

(Letro) <u>fr.lethro81@gmail.com</u>

\$ 🔿

13°C

Thank

you

PC850 PROFESSIONAL

Assessing the Structural Connectivity of a Biological Corridor for Tiger Movements between National Parks in Bhutan

Questions?

December 2018

2013-08-24 6:05:38 PM M 2/3

(Letro) fr.lethro81@gmail.com

Thank

you

PC850 PROFESSIONAL