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A B S T R A C T

Land-use change is considered the greatest threat to biodiversity worldwide. As such, identifying the drivers that
shape biological communities is crucial for enhancing conservation strategies in human-modified tropical
landscapes. We used a hybrid patch-landscape design and a multi model inference approach to assess the relative
impacts of forest loss, increased edge density and increased pasture cover on dung beetle functional groups in the
Brazilian Atlantic Forest – a biodiversity hotspot. Our findings provide novel empirical evidence showing that
edge density can be a major driver for dung beetles when compared to forest and pasture cover at the landscape
scale. However, forest and pasture cover also influenced some dung beetle responses, supporting the idea that
biological communities are negatively affected by habitat loss and changes in land cover. We found that dung
beetle body size, protibia area and metatibia length were all larger in landscapes with increased edge density,
reinforcing the need for further studies exploring which mechanisms could favour the presence of larger dung
beetles in fragmented tropical landscapes. Taken together, these results suggest the need of conservation and
management strategies focused on the protection of the remaining Atlantic Forest fragments, and the promotion
of forest recovery and reduction in the pasture cover and edge density at the landscape-level.

1. Introduction

Land-use change represents one of the major threats to global bio-
diversity (Newbold et al., 2019), altering species distributions and
weakening ecosystem functionality (Cardinale et al., 2012; Pimm and
Raven, 2000). Habitat loss – which reduces the available native core
habitat and the functional/climate connectivity between patches
(Senior et al., 2019), along with fragmentation impacts on remaining
habitat structure (Laurance et al., 2006) and microclimate (Didham and
Lawton, 1999) are suggested as the main pathways by which land-use
change affects biodiversity in anthropogenic landscapes (Didham et al.,
1998). This is particularly so in the tropics (Newbold et al., 2019),
which host most of Earth’s biodiversity and have the greatest rates of
land-use change (Barlow et al., 2018; Lambin et al., 2003).

The historical trajectory of the Brazilian Atlantic Forest offers an

excellent opportunity to examine how land-use change is affecting
tropical forest biodiversity (Melo et al., 2013). This forest hotspot is one
of the most diverse ecosystems in the world (Myers et al., 2000), and
has experienced high rates of habitat loss and fragmentation (Tabarelli
et al., 2010). As a result of five centuries of deforestation, forests in this
biome now covers only 11.7% of their original area, and 80% of forests
are contained in fragments of 50 ha or less (Ribeiro et al., 2009; Ribeiro
et al., 2011). Several studies have shown that Atlantic forest loss and
fragmentation leads to profound ecological consequences such the loss
of taxonomic and functional diversity (Audino et al., 2014), altered
species composition (Filgueiras et al., 2011) and loss of carbon stocks
(Rocha-Santos et al., 2016). These consequences are more alarming
when they involve the loss of keystone groups, which can result in
cascade effects with severe implications for ecosystem functioning
(Morante-Filho et al., 2018). For example, the loss of vertebrate and
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invertebrate seed-dispersers can affect processes related to seed dis-
persal and seedling establishment (Culot et al., 2015), and consequently
the ability of forest fragments to recover as well as to resist further
disturbances.

Dung beetles are considered a responsive and cost-effective model
system for evaluating the impacts of human activities on tropical eco-
systems (Bogoni et al., 2019; Gardner et al., 2010; Nichols et al., 2007).
They also contribute to important ecosystem processes such as soil
nutrient cycling, secondary seed dispersal, and seedling establishment
(França et al., 2018; Nichols et al., 2008). Hence, research shows that
both their sensitivity to environmental changes and ability to contribute
to ecosystem functioning are influenced by a set of functional traits
such as the resource-relocation behaviour, body size, diet, and habitat
preference (Barragán et al., 2011; Leite et al., 2018; Nichols et al.,
2009). For instance, it has been demonstrated that forest loss affects
dung beetle species according to their habitat preference (da Silva et al.,
2019; Leite et al., 2018). It has also been found that smaller and isolated
fragments have impoverished dung beetle communities (Filgueiras
et al., 2011), but appear to serve as a refuge for some forest species
(Arellano et al., 2008).

Despite advances provided by previous research investigating the
impacts from habitat loss and fragmentation on biodiversity (Gardner
et al., 2008), as well as assessing the dung beetle responses to land-use
change (Filgueiras et al., 2015), there are two key knowledge gaps
which limit the ability of promoting conservation strategies within

fragmented landscapes. First, few studies have evaluated how the
contribution of different landscape descriptors may vary for different
functional groups (Moura et al., 2015); and even fewer have considered
morphological traits that may advance our understanding on how dung
beetles respond to forest fragmentation (McGill et al., 2006). Second,
when multiple landscape descriptors (e.g. patch size and shape) have
been used to explain dung beetle responses, these descriptors were
analysed individually (Campos and Hernández, 2015; Filgueiras et al.,
2011) and/or at a patch scale (but see Filgueiras et al., 2015; 2016),
and within other forest ecosystems (Arellano et al., 2008; Sánchez-de-
Jesús et al., 2015).

Here, we addressed these knowledge gaps by surveying 16 land-
scapes and distinct dung beetle responses to assess how distinct land-
scape-level descriptors (e.g. forest cover, edge density, and pasture
cover) affect tropical forest biodiversity. We ask the following ques-
tions: (1) How these landscape descriptors affect different dung beetle
responses? and (2) What landscape descriptor was the main driver of
ecological changes in dung beetle communities? We expect dung beetle
responses to vary among the distinct landscape descriptors, given that
dung beetle communities host large groups of species with different
habitat and feeding needs, life history, and dispersal capabilities
(Halffter and Edmonds, 1982; Hanski and Cambefort, 1991). We also
predict a compositional differentiation in dung beetle communities
between landscapes, given their sensibility to habitat alteration (Barlow
et al., 2010; Filgueiras et al., 2015) and the previous evidence that

Fig. 1. Study area in the Atlantic Forest biome, Brazil. (A) Localization of study area in which the communities of dung beetles were sampled in the state of Bahia,
Brazil; (B) Distribution of the 16 landscapes (black circles) and characterization of the land-use in the study; (C) Example of the buffer of 1-km radius created around
the fragment’s center point for landscape descriptors calculations (i.e. forest cover, edge density and pasture cover).
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shows that changes in β-diversity can emerge in fragmented tropical
landscapes (Filgueiras et al., 2016; Morante-Filho et al., 2015). We also
expect forest cover to drive the most pervasive biological effects, as
previous research highlights its importance when compared to other
landscape descriptors (Fahrig, 2003; 2013; Pardini et al., 2010). Taken
together, our analyses provide a quantitative understanding of the
spatial attributes that may drive the persistence and loss of dung beetles
in the Atlantic forest biodiversity hotspot and can provide a basis for
predicting the biological consequences of future deforestation on other
tropical forested regions.

2. Material and Methods

2.1. Study area

The study was conducted in the southern region of Bahia state,
Brazil (15°280S, 39°150 W, WGS84). This region is dominated by tro-
pical lowland rainforest (Thomas et al., 1998), with mean annual
temperature and rainfall of 24 °C and ca. 2.000 mm, respectively. Land-
use changes were particularly severe within large tracts of previously
continuous forests, which were converted to small fragments in dif-
ferent succession stages and embedded within a mosaic of different
matrices such as cocoa plantations and cattle pastures (Pardini et al.,
2009).

2.2. Sampling design and landscape descriptors

We selected 16 non-overlapping sampling landscapes (Fig. 1) based
on a hybrid patch-landscape approach (Tischendorf and Fahrig, 2000).
Landscape selection was based on high-resolution satellite images from
2009 to 2010 (RapidEye®), and 2011 (QuickBird® and WorldView®).
The polygons were classified as forest fragments and different land-uses
(e.g. pasture and other matrices), according to the Brazilian Institute of
Geography and Statistics (IBGE, 2006). After ground-validation, we
used ArcGIS 10.2 software (ESRI, 2011) to develop a digital map with a
scale of 1:10 000 and covering an area of 3.500 km2. The study area
shows a subdivision into two regions (north and south, Fig. 1B), mainly
due to a sandy stripe between them, because we avoided to sample in
Restinga and Montane Forests. However, the two regions show similar
vegetation types, soil and topography (Thomas et al., 1998).

We used the FRAGSTATS software (McGarigal et al., 2012) to es-
timate the percentage of forest and pasture cover in the matrix (here-
after ‘pasture cover’), and the edge density in each landscape. Forest
cover within our landscapes varied between 3 and 100%, pasture cover
0 and 100%, and edge density 0 and 73 m/ha (see Table S2 for details).
The percentage of forest cover and edge density variables were based
on forest fragments (old-growth and secondary forest) within a 1-km
radius from the centre of the landscape – the same scale used for as-
sessing the pasture cover. The centre of each landscape was selected
preferably in a fragment of old-growth forest. We used a scale of 1-km
radius to calculate forest cover, edge density and pasture cover because
it represents the longest movement distance recorded for dung beetle
species in Atlantic Forest within a 48-h period (da Silva and Hernández,
2015). Landscapes were separated by at least 1-km from the border of
the buffer to assure independent dung beetle sampling (da Silva and
Hernández, 2015).

2.3. Dung beetle data

Given that previous research within the Atlantic forest recorded
greater dung beetle species richness and abundance during the rainiest
months (Batista et al., 2016; Hernández and Vaz-de-Mello, 2009;
Salomão and Iannuzzi, 2015), dung beetles were sampled three times at
each of the 16 landscapes during the rainy season (April-June) in 2017.
We used pitfall traps, which consisted of a plastic container (15 cm in
diameter and 13 cm in height) buried with an opening at ground level

and with a small bait container (3 cm in diameter by 4.8 cm in height).
Pitfalls were filled with ca. 250 ml of a killing solution containing salt
and a few drops of detergent; and were protected from rain by a plastic
lid.

We established three sets of pitfalls, spaced 100-m apart (da Silva
and Hernández, 2015), in the centre of each landscape. Each set con-
tained three pitfalls disposed at the vertices of a 5-m equilateral tri-
angle, and each trap had a different bait-treatment (ca. 30 g of either
human faeces or decomposed meat, or non-baited) that was randomly
allocated within sets. After 48 h, all sampled dung beetles were taken to
Laboratório de Ecologia Aplicada a Conservação at the Universidade Es-
tadual de Santa Cruz, Brazil. Thus, individuals were identified to species
level, whenever possible and voucher specimens were deposited in the
Laboratório de Entomologia, Universidade Estadual de Santa Cruz, Brazil
and Seção de Entomologia da Coleção Zoológica, Universidade Federal de
Mato Grosso, Brazil. We separated dung beetles according to their re-
source-relocation behaviour, diet preference, morphological traits and
species composition.

2.3.1. Resource-relocation behaviour: Species were grouped as tun-
nelers, rollers and dwellers. This attribute is related to dung manip-
ulation for feeding and reproduction (Halffter and Edmonds, 1982;
Hanski and Cambefort, 1991). Tunneler species are those that dig
tunnels in the soil immediately under or very close to the resource,
whereas rollers usually make resource balls and roll them to some
distance from the original resources. Dwellers usually remain within
the resource deposits.

2.3.2. Diet preference: Species were grouped as coprophagous, ne-
crophagous and generalists. Following Beiroz et al. (2017), we con-
sidered as coprophagous and necrophagous when > 75% of the in-
dividuals of a given species was sampled in dung- or meat-baited traps,
respectively; and as generalists those species with lower percentages.
For species with less than five individuals, we sought the advice of the
dung beetle specialist Dr Fernando Vaz-de-Mello.

2.3.3. Morphological traits: We examined morphological traits re-
levant to soil excavation and dung burial activities (Nichols et al., 2008;
Petchey and Gaston, 2006). We used a Leica M250 microscope and Life
Measurement software (Leica, Wetzlar, Germany) to measure the [i]
body size (sum of pronotum and elytra length), [ii] protibia area, and
[iii] metatibia length. We measured these traits in up to 30 individuals
per species in each landscape (N = 1.450 individuals), which is the
minimum threshold recommended for ensuring an accurate estimation
of dung beetle mean trait values (Griffiths et al., 2016).

2.4. Statistical analyses

We used the coverage estimator recommended by Chao and Jost
(2012) to estimate the accuracy of our dung beetle surveys. We con-
sidered not only the observed values of species richness, but also the
expected values based on coverage-based extrapolations. We estimated
the variance inflation factor (VIF) to assess collinearity among ex-
planatory variables (presented in Table S3). Values of VIF should
be < 2.5 in order to avoid the collinearity effect (Zuur et al., 2009).

To address our first question and assess the effects of the landscape
descriptors (forest cover, edge density and pasture cover) on dung
beetle responses (e.g. resource relocation behavior, diet preference and
morphological traits), we adopted an information-theoretic approach
based on the selection of the most parsimonious models (Burnham and
Anderson, 2002). For each response metric, we built full models re-
presenting all combinations and interactions with explanatory vari-
ables. For each model, we computed the Akaike’s information criterion
corrected for small samples (AICc) and selected the most parsimonious
models (ΔAICc < 4, when compared to the best model). From the
complete set of possible models, we averaged coefficients of models
within ΔAICc < 4, thus capturing greater uncertainty in the final set of
candidate variables (Vierling et al., 2013). We fixed a Gaussian dis-
tribution for continuous response variables after verifying for
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normality; and used Poisson distribution, corrected for over-dispersion
(quasi-Poisson) if required, when response variables did not follow a
normal distribution (Zuur et al., 2009). We assessed the distribution
suitability and model fit through residual analysis and semivariograms
(Crawley, 2012; Diggle and Ribeiro, 2007).

All response metrics were analyzed at landscape-level (i.e. three sets
of pitfall traps per landscape). Models were run for species richness and
abundance of each resource-relocation behaviour (tunnelers, rollers,
and dwellers) and diet preference (coprophagous, necrophagous, and
generalists). The species richness and abundance of each of these
groups represented, respectively, the total number of species and in-
dividuals sampled across the three surveys conducted in each of the
landscapes. For models assessing morphological traits (body size, pro-
tibial area, metatibia length), we considered the community average of
the trait as our response variables. Therefore, changes in body size,
protibia area and metatibia length represent the average variation of
these traits for each landscape. Lastly, to examine changes in species
composition, we performed a Jaccard similarity index to assess the
compositional similarity of dung beetle communities between land-
scapes. We also performed similarity profile tests (SIMPROF) to eval-
uate whether dung beetle compositional similarity differed significantly
between distinct landscapes (α = 0.05).

To assess the independent contribution and relative importance of
each landscape descriptor and evaluated if forest cover would con-
tribute more than edge density and pasture cover for changes in dung
beetle communities (second question), we performed a hierarchical
partitioning (HP) analysis (Mac Nally, 2000; Murray and Conner, 2009)
with all variables retained in the candidate set with best models from
previous analysis. Competing models were evaluated based on R2

goodness of fit, which allowed us to interpret the independent effects of
each predictor as the proportion of explained variance. The effects’
significance (α = 0.05) was calculated using a randomization test with
1,000 interactions (Mac Nally, 2002).

We performed analyses in R software (R Core Team, 2019) and
using the following packages for computing: (1) coverage estimator —
entropart; (2) variance inflation factor — car; (3) normality — stats; (4)
model selection — MuMIn; (5) hierarchical partitioning — hier.part.
Jaccard similarity index and SIMPROF were conducted in Primer soft-
ware version 6.0 (Clarke and Gorley, 2006).

3. Results

We sampled 3,944 dung beetles from 16 genera and 37 species in
the 16 landscapes (Table S1). Sample coverage was satisfactory in all
landscapes (75–99% of the species recorded, Table S2), indicating that
our sampling effort was adequate.

3.1. How landscape descriptors affect dung beetle responses?

Distinct dung beetle responses were affected by different sets of
landscape descriptors (Table 1). Landscape metrics were not correlated
(VIF < 2.5), which allowed us to independently evaluate their effects
on dung beetle responses (Table S3).

3.1.1. Resource-relocation behavior
Model selection revealed strong support for the influence of edge

density and pasture cover for all resource-relocation behaviours, and
from forest cover on roller species (Fig. 2, Table S4, Fig. S1). We found
that dweller abundance, and tunneler abundance and richness declined
with increased pasture cover and edge density. The abundance of
rollers declined with lower forest cover, and when the interaction of
higher edge densities and more pasture.

3.1.2. Diet preference
Forest cover had a strong influence on all diet-based dung beetle

groups (Fig. 2, Table S4, Fig. S1). The abundance of coprophagous

beetles declined with increased edge density and pasture cover at
landscape-level, while their richness declined with the increase of edge
density and forest loss. We found necrophagous abundance and richness
declining with forest cover loss and increasing with pasture cover, re-
spectively. The abundance of generalist beetles was enhanced by in-
creased forest cover.

3.2. Morphological traits

We found strong support for the influence of edge density on all
examined traits. Dung beetle body size and protibia area were higher in
landscapes with greater edge density, and when the interaction be-
tween edge density and pasture cover was present in the models (Fig. 2,
Table S4, Fig. S1). Hence, protibia area was also positively related to
the interaction of larger edges and pasture cover, and negatively af-
fected when edge density interacted with forest cover. Lastly, land-
scapes presenting more edge density also had dung beetle species with
higher metatibia lengths.

3.2.1. Species composition
According to Jaccard similarity index and SIMPROF analysis, spe-

cies distribution clustered dung beetles into eight significantly distinct
groups (Fig. 3). Three clusters were composed by species with a narrow
distribution, which were recorded in only one or two landscapes and
varied between 50 and 100% of similarity. One cluster was composed

Table 1
AICc-based model selection for (i) resource-relocation behavior, (ii) diet pre-
ference and (iii) morphological traits. Multimodel inference based on a model
with all explanatory candidate variables followed by model selection (FC –
forest cover, ED – edge density, PC – pasture cover, ED + FC – interaction edge
density and forest cover, ED + PC – interaction edge density and pasture
cover). We show results of all models within ΔAICc < 4.

Dung beetle
response

Model
ranks

Model AICc ΔAICc ω Cumulative ω

Resource-
relocation
behavior

Tunneler
abundance

1 PC 43.11 0.00 0.46 0.46

2 ED 45.00 1.89 0.18 0.64
Roller abundance 1 ED + PC 44.68 0.00 0.49 0.49

2 FC 46.30 1.62 0.22 0.71
Dweller abundance 1 ED 39.03 0.00 0.87 0.87

2 PC 42.81 3.78 0.13 1.00
Tunneler richness 1 ED 34.21 0.00 0.72 0.72

2 PC 36.06 1.85 0.28 1.00
Roller richness 1 Null 49.30 0.00 0.40 0.40
Dwellers richness 1 Null 49.14 0.00 0.29 0.29
Diet preference
Coprophagous

abundance
1 ED 37.31 0.00 0.68 0.68

2 PC 40.78 3.46 0.12 0.80
Necrophagous

abundance
1 FC 45.09 0.00 0.40 0.40

Generalist
abundance

1 FC 42.64 0.00 0.61 0.61

Coprophagous
richness

1 ED 40.37 0.00 0.64 0.64

2 FC 43.60 3.23 0.13 0.77
Necrophagous

richness
1 PC 45.64 0.00 0.46 0.46

Generalist richness 1 Null 48.85 0.00 0.33 0.33
Morphological

traits
Body size 1 ED 32.43 0.00 0.32 0.32

2 ED + PC 32.64 0.21 0.29 0.61
Protibia area 1 ED 38.14 0.00 0.42 0.42

2 ED + FC 38.63 0.49 0.33 0.75
3 ED + PC 41.76 3.63 0.07 0.82

Metatibia length 1 ED 38.14 0.00 0.32 0.32
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Fig. 2. Model averaging of candidate models and confidence intervals within ΔAICc < 4 for resource relocation behavior, diet preference and morphological traits
on effects of ED – edge density, PC – pasture cover, FC – forest cover, ED + FC – interaction edge density and forest cover, ED + PC – interaction edge density and
pasture cover.
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by species with wider distributions, and each species was recorded
in ≥ eight landscapes (57% of similarity). Two clusters were composed
by species distributed mainly in landscapes with higher forest cover
(≥45%) and low edge density (33 and 24 m/ha); displaying 33% and
14% of similarity, respectively.

3.3. What landscape descriptor was the main driver of ecological changes in
dung beetle communities?

Overall, edge density was the most important landscape descriptor
(accounting for 66% of the explanation and having eight significant
contributions), followed by forest cover (33%; four significant effects),
and pasture cover (16%; two significant effects; Fig. 4, Table S5). We
also found edge density influencing all dung beetle responses when

considering the independent contribution from each landscape de-
scriptor in complete models that showed the highest percentage of
explained deviance.

4. Discussion

This study contributes to our understanding of the drivers of change
in biodiversity within fragmented tropical landscapes. Two findings
deserve special attention. First, in a broader perspective, all measured
landscape attributes played a key role in determining the dung beetle
responses, supporting the idea that biological communities are influ-
enced by different landscape attributes in the Brazilian Atlantic Forest.
Moreover, landscapes with higher forest cover and lower edge density
sustained dung beetle community with different requirements of diet

Fig. 3. Dendrogram clustering dung beetles, according to Jaccard similarity index and map of occurrence to dung beetle species recorded in the 16 landscapes of
Atlantic Forest, Brazil. Solid lines represent statistical differences between groups, based on SIMPROF analyses (α < 0.05).
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preference, body size and resource relocation behaviour. Second,
changes in the dung beetle community were strongly influenced by
edge density rather than by forest and pasture cover at the landscape
scale. We discuss these results below.

4.1. How landscape descriptors affect dung beetle responses?

4.1.1. Resource-relocation behaviours
Our results demonstrated that all resource-relocation groups were

negatively affected by increased edge density, and that pasture cover
and forest loss bring negative effects for dung beetles – particularly
roller species, reinforcing the negative ecological impacts from habitat
loss and fragmentation on biodiversity (Barlow et al., 2010; Gardner
et al., 2008).

The different dung beetle resource-relocation behaviours are con-
sidered as a strategy to facilitate species coexistence (Hanski and
Cambefort, 1991) through reducing competition for food resources and
coping with dung dissection – which are key factors influencing the
survival of tropical dung beetles (Halffter and Edmonds, 1982). As
forest loss and fragmentation has been associated with loss of native
forest mammals (Canale et al., 2012), resource scarcity in highly frag-
mented landscapes is likely to create a competitive hierarchy for dung
beetle resource-relocation behaviours. Overall, rollers and fast tunne-
lers are considered stronger competitors than slow tunneler and dweller
species (Hanski and Cambefort, 1991). However, this strength hier-
archy (rollers > tunnelers > dwellers) is combined with associated
energetic costs, where stronger competitors such as roller species need
more energy and, consequently, more resources (Halffter and Edmonds,
1982; Krell et al., 2003). The relocation and use of energy reserves to
roll the food resource away in a short time span may, therefore, cause a
reduction in individual fitness – mainly when food resources are scarce
– through affecting beetles’ physiological integrity (França et al.,
2016a). Reductions in fitness of roller dung beetles – which usually dig
shallower nests (Hanski and Cambefort, 1991), may be escalated by
edge effects (e.g. increased soil temperature) particularly where forest
fragments are within a matrix with very dissimilar vegetation structure
(Bunyan et al., 2012; Harper, 2005; Ries et al., 2004).

4.1.2. Diet preference
We found the abundance and richness of necrophagous and copro-

phagous beetles decreasing in landscapes with higher values of forest
loss, edge densities and pasture cover, while more generalist beetle
individuals were sampled in landscapes with more forest cover. Dung
beetles’ diet preference can be influenced by different resource char-
acteristics such as the physical and chemical characteristics, water and/
or fibre content, and the nutritional value of dung resources (Arellano
et al., 2015; Gittings and Giller, 1998; Verdú and Galante, 2004). Ir-
respective of their diet preference and resource characteristics, our re-
sults are probably related to the fact that landscapes with higher forest
cover sustain greater environmental and resource heterogeneity, thus
supporting more dung beetle species (Navarrete and Halffter, 2008;
Tscharntke et al., 2012). In addition, landscapes dominated by pas-
turelands are also more likely to have non-native herbivore dung
(Steinfeld et al., 2006), which may favour generalist species while ne-
gatively affecting necrophagous dung beetles that frequently compete
with others insect groups for carcasses (Jong and Chadwick, 1999) – a
less frequent and more spatiotemporally limited resource (Halffter and
Matthews, 1966).

4.1.3. Morphological traits
Many studies show that dung beetles decrease in body size within

tropical disturbed forests (e.g. Filgueiras et al., 2011; França et al.,
2016b; França et al., 2017) and are more prone to local extinctions
(Gardner et al., 2008). However, we surprisingly found increased body
size, protibia area and metatibia length within landscapes with higher
values of edge density and pasture cover. There are two likely reasons
that could explain the differences between our results and previous
research. First, these findings could be associated with an increase in
generalist species – which may be favoured by climatic (França et al.,
2020a) and anthropogenic disturbances (Beiroz et al., 2017; Salomão
et al., 2018). The mean body size of our generalist species in landscapes
with high edge density was ca. 8.4 mm, while coprophagous species had
body sizes of around 5.2 mm. On the other hand, in landscapes with low
edge density, the mean size of a generalist and coprophagous beetles
was ca. 7.8 and 7.9 mm, respectively. Thereby, because larger species

Fig. 4. Gray bars represents independent contribution of each explanatory variable (relative importance) on dung beetles in Atlantic Forest, Brazil. Black bars
represent significant effects (α = 0.05) as determined by the randomization test. Z-scores for the generated distribution of randomized and statistical significance is
based on the upper 0.95 confident limit (Z ≥ 1.65). Legend: PC – pasture cover, ED – edge density and FC – forest cover.
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are expected to perform more ecological functions (Feer, 1999; Vulinec,
2002), further research would need to ascertain the mechanisms by
which increased edge density could favour larger beetle species in the
Atlantic forests, as well as whether generalist species could provide
functional redundancy in relation to dung beetle functions. Second,
methodological differences in trait measurement. Most studies de-
monstrating the loss of larger beetles measured their body mass (e.g.
Audino et al., 2014; Filgueiras et al., 2011), while here we measured
their length (see Methods) – which is a trait correlated with biomass
(e.g. Radtke and Williamson, 2005).

4.1.4. Species composition
By demonstrating that habitat loss and fragmentation can affect the

composition similarity of dung beetles, our study provides support that
forest disturbances can act as an environmental filter to biological
communities (Magura et al., 2018; Su et al., 2004). The loss of dung
beetle species filtered out in the landscapes highly-affected by habitat
loss and changes in land cover may result in cascading effects and
further losses in their contribution to ecosystem functions. Previous
research has demonstrated that changes in dung beetle species com-
position can affect important ecological processes (Slade et al., 2007) –
which may bring further implications for Atlantic forests regeneration
through altering the spatial patterning and demography of plant species
that depend on dung beetles as secondary seed dispersers (Lawson
et al., 2012; Vulinec, 2002). Similar cascading effects were observed in
our landscapes, as the decaying of fruit biomass triggered by landscape-
scale deforestation (Pessoa et al., 2016) negatively affected local di-
versity of forest birds (Morante-Filho et al., 2018), key vectors of seed
dispersal (Cazetta et al., 2019; Menezes et al., 2016).

We call for further investigations on how these compositional
changes and the loss of dung beetle functional groups in response to
habitat loss could affect the resilience of Atlantic forest fragments to
ongoing climatic and anthropogenic disturbances on this biome
(Sundstrom et al., 2012). This is particularly important given recent
evidence demonstrating that interactions between human activities and
climate stressors can cause drastic losses in dung beetle communities
and their contribution to dung removal and seed dispersal in tropical
forests (França et al., 2020b).

4.2. What landscape descriptor was the best predictor of ecological changes
in dung beetle communities?

Previous research has highlighted forest cover as the main driver of
biological effects when compared to other landscape descriptors
(Fahrig, 2003; 2013; Pardini et al., 2010), but recently there has been a
growing debate about the relative role of habitat amount versus habitat
configuration (Fahrig, 2017; Fahrig et al., 2019; Fletcher Jr. et al.,
2018). Our study revealed that edge density had an additive effect with
forest and pasture cover, which would refute suggestions by Fahrig
(2017) that fragmentation research and edge effects are “zombie” ideas,
while giving support to the influence of forest edges for the co-
leopterofauna (Magura et al., 2017). Furthermore, dung beetle attri-
butes responded differently to distinct landscape metrics, suggesting
many aspects of the landscape can influence ecological conditions.

There are good reasons to support the importance of edge effects for
dung beetles.

Matrix composition has also been shown to be as important as forest
loss when shaping dung beetle communities in Mexican forests
(Sánchez-de-Jesús et al., 2015), and dung beetles are known for their
high sensitivity to even small changes in forest structure (da Silva and
Hernández, 2016) and low-level forest disturbances (Bicknell et al.,
2014) that can occur through altered microclimatic conditions at the
forest edge (Laurance et al., 2002; Ries et al., 2004). Moreover, habitat
conditions (e.g. low relative humidity, high luminosity and greater
temperature variability) can directly influence both the larvae and
adult survival in dung beetles, which are dependent of ephemeral

resources that become unusable when desiccated (Sowig, 1995); and
have been shown to be negatively affected by anthropogenic edges in
forested landscapes (Filgueiras et al., 2015; 2016; Spector and Ayzama,
2003).

We provide evidence that the importance of landscape descriptors
can vary for distinct beetle responses. A previous study in the same
landscapes have shown that while the local diversity of forest birds is
positively influenced by forest cover, the increasing density of edges
favoured generalist counterparts, thus depicting how different land-
scape metrics have pervasive but distinct influence on species assembly
in anthropogenic landscapes (Morante-Filho et al., 2018). Thereby, we
also support that further research should focus on different landscape
descriptors and biological/functional metrics when assessing the im-
pacts of habitat loss and fragmentation, or promoting conservation
strategies within anthropogenic landscapes in the tropics (Solar et al.,
2016).

5. Conclusion

Our research assessed the influence of three distinct landscape at-
tributes for dung beetle communities from the Brazilian Atlantic forest
hotspot (Myers et al., 2000). We found edge density as the main driver
of biological changes, but both forest and pasture cover also sig-
nificantly influenced many of the dung beetle responses. We, therefore,
call for conservation and management strategies focused on the pro-
tection of the remaining Atlantic Forest fragments, and the promotion
the forest recovery and reduction in the pasture cover and edge density
at the landscape-level. This will be beneficial not only for dung beetles,
which perform several key ecological processes (França et al., 2018;
Nichols et al., 2007), but also for the other groups that usually respond
similarly to human-induced forest disturbances in tropical regions such
as birds and plants (e.g. Barlow et al., 2016; Ferreira et al., 2018;
Morante-Filho et al., 2018). Nevertheless, given that tropical ecosys-
tems are subject to multiple sources of stress such as climate change and
local disturbances (Barlow et al., 2018; França et al., 2020a), con-
servation efforts will also require multiple but interdependent man-
agement actions at landscape level to attain long-term success.
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