

Report Season 2016-2017

Song occurrence and culture of humpback whales breeding off the coast of Ecuador: Acoustic-visual surveys, analysis, education and scientific collaboration.

CETACEA ECUADOR

Principal Scientifics:

Javier Oña, Judith Denkinger and Ellen Garland

Students and Scientific team:

Ana Paula Suárez, Geovanna Jácome, Francisco Rubianes, Laia Muñoz, Marilda Intriago, Martin Narvaez, Judith Denkinger, Javier Oña.

Principal support:

Rufford Foundation Grant 2016-2017

Project CETACEA, USFQ.

June 2017

1. Introduction

Song repertoire is considered to be an indicator of humpback whale presence and provides relevant information of seasonal occupancy in breeding grounds (e.g. Lammers et al. 2011). Humpback whale songs have been well researched in different breeding grounds of the world oceans (Payne and Guinee, 1983). However, in breeding grounds of the Southeastern Pacific region, acoustic behavior, social behavior, and migratory movement of this specie has received little attention compared with surface activity studies (Flórez et al. 2007, Kavanag, 2017). Song patterns may help to determine connectivity among populations of humpback whales and support strategies of conservation and management in the at Southern hemisphere (Andriolo et al. 2014, Garland et al. 2015).

Song structure and patterns of song can be used to recognize subpopulations or isolated populations according to the level of song exchange within an ocean basin (intra-oceanic songs), and among ocean basins and/or hemispheres (inter-oceanic songs) (Winn et al., 1981; Payne and Guinee, 1985; Garland et al., 2015). This is due to all males within a population singing the same song at any one time, and populations within an ocean basin singing similar songs based on the distance between populations (Payne and Guinee, 1985). Songs evolve through time within a population, and changes are shared among populations within an ocean basin (e.g. Winn and Winn, 1978; Payne and Payne, 1985). Humpback whale songs were culturally transmitted in a step-wise fashion between populations causing population-wide cultural change which remains the best example to date of horizontal cultural transmission in a non-human animal (Garland et al 2011, 2013, 2015). In the Southeast Pacific song transmission is poorly understood; there is little knowledge of song evolution within and between seasons, and how this differs among the multiple breeding grounds.

In this context, specific initiatives from Colombia, Ecuador, and Peru, and other countries, have increased information with large data collections, that should be management and used adequately to effectively promote acoustic monitoring of cetaceans in the Southern hemisphere region. Relevant baseline information has been generated about acoustic presence, behavior, spatial distribution and whale watching of humpback whale populations (Group G) at Southeastern Pacific region (e.g. Felix and Hasse 2001a, 2005, Felix and Botero 2009, Pacheco et al. 2011, 2013, Guidino et al. 2014, Garcia and Pacheco 2016, Oña et al 2017, Valdivia et al 2017). However, acoustics studies in South America are still in the very beginning and training programs using new acoustic technology applications are necessary to improve research and collaborations (Sousa-Lima et al 2013).

Humpback whales breed off the coast of Ecuador from June to September each year. As part of their mating behavior, they fill our coastal waters with an extravagant song display (Oña et al., 2017). So far, in the coastal areas we have collected relevant information on the habitat preference, spatial distribution, social structure and acoustic

behavior of humpback whales during several seasons (Intriago 2015, Narvaez 2015, Oña et al., 2017) and in deep waters (off coast Esmeraldas, Manabí and Santa Elena) not commonly visited by research boats (Rubianes, 2015). Ocean noise is increasing and this is considered an important threat, especially for cetaceans which rely primarily on sound for communication (e.g. Dunlop et al., 2010, Rolland et al., 2011). To improve our understanding of song occurrence and culture in humpback whales, we need to continue research through scientific collaborations in the region. With CETACEA project, our team has worked to strengthen fieldwork techniques and acoustic analyses, which will allow to adequately define conservation priorities for humpback whales and enhance local capacity of students, young researchers and awareness of the local community. This report informs of our scientific advances concerning regional collaboration and with the community work during the 2016 humpback whale research season.

2. Study Area

Northern Ecuador is an important breeding location for humpback whales that migrate along the west coast of South America (Group G). During the 2016 season we expanded our acoustic efforts to a new field site off the coast of Quinge in the Galera-San Francisco Marine Reserve with coordinates from N0° 49' 43.9" W80° 02' 55.2" to N0° 37' 18.5" W80° 03' 17.6" (Figure 1). This breeding ground has a temperature range that varies from 24 to 26 °C. The seabed structure is composed of areas with hard substrate, mixed bottoms formed with sand and rock and soft bottoms with muddy channels. The coastline of is approximately 12 km long, with depths ranges gradually increasing from 100 m to 500 and more than 1000 m (Denkinger et al., 2006). (Figure 1).

Figure 1. Study Area (Galera-San Francisco Marine Reserve). Modified from Denkinger et al., 2006 and Flórez et al., 2007.

3. Acoustic and Visual Surveys

During the breeding season 2016, acoustic sampling, direct observation (sightings) and photo-identification were performed through standardized acoustic sampling stops and dedicated visual search. Boat-based acoustic and visual surveys of humpback whales were conducted for 33 days between July to September, spending 4 to 5 hours every day covering different parts of the marine reserve. We sampled at acoustic stations with a minimum of 8 to 10 km distance between each other in order to avoid spatial autocorrelation.

During each song recording and when whales were sighted information as sea state, geographic position, group size, presence of calves, underwater sounds, and behavior was noted. Acoustic recordings were made with an omnidirectional hydrophone Dolphin ear (sensitivity of 15 Hz - 20,000 Hz +/- 3db) and a Tascam DR-40 tape recorder (WAV files, 16 bit, 44.1 kHz). If possible, underwater video recordings were performed during opportunistic encounters. Songs were recognized from the distinctive species-typical harmonic sounds, long vocalization times, and repeating patterns (Payne and McVay 1971).

4. Spatial and Acoustic Store

Songs recordings and information collected during acoustic surveys from previous years to 2016 were stored standardized. Dat- Recorder (Digital Audio Tape) and Digital Recorder sheets, including metadata were standardized (see annexes) to allow share this information through of regional scientific collaboration. This entire standard manner to store acoustic information was obtained and modified from "ACOUSTIC NOTES 2012" prepared by Ellen Garland and Mike Noad (unpublished).

5. Regional Bioacoustic Workshop

The "Bioacoustic Introduction to Humpback Whales" workshop was carried out during from the 9th to 11th November at the University San Francisco de Quito, Ecuador. In this workshop we invited, Dr. Ellen C. Garland (University of St. Andrews) as an international bioacoustics expert from San Andrew University, Scotland. Collaborators and students from Colombia, Ecuador and Peru participated in this workshop (see annexes). Currently, we are elaborating collaborations with Colombia and Peru to gather song samples for the next season 2017 from Peru, Colombia and the Laboratory of Bioacoustics, Universidade Federal do Rio Grande do Norte, Brazil (see annexes).

6. Acoustic Analyses Advances

From analyses of humpback whale songs during the 2016 season, Ana Paula Suarez (USFQ Bachelor student) conducted her thesis on the impact of earthquakes on the acoustic behavior of humpback whales. High quality song samples were visually and acoustically explored using Raven Pro 1.4. Beta version. We coded and extracted acoustic parameters such as duration (min) frequency, max frequency, start frequency, end frequency, frequency range, frequency trends, number of inflection and peak frequency of each unit (see photo). Through collaboration, with other researches of South America we will explore song occurrence and culture of humpback whales in the Southeastern Pacific region.

7. Education strategy

Song recordings and photos were converted for education material (see annexes). Materials were used to inform about the biology and ecology of humpback whales in Ecuadorian waters. Both Caimito and Quingue communities (kids, tourists, fisherman and adult people) participated actively during all education activities (puppet show and beach cleaning) (see annexes). This kind of social strategy had an important social impact to generate awareness about marine mammals and conservation in the marine reserve.

8. Acknowledgments

I want to thank my tutors Ellen Garland and Judith Denkinger for their support in all training and scientific initiatives. I want to thank the team involved in the CETACEA Project, Ana Paula Suárez, Martín Narváez, Marilda Intriago, Laia Muñoz, Francisco Rubianes, and Geovanna Jácome for their assistance with data gathering and working at the "Caimito Scientific Station". My thanks go to all volunteers involved in the acoustic and visual monitoring of humpbacks: Megan, Emily, Lucy, Andrew, Heather, and Daniela Asar and tourists involved in all project activities. Puppet work "Elena La Ballena Jorobada", was written and directed by Marilda Intriago with support of Geovanna Jácome, Martín Narváez, Sara Carranco and Kelly Morales. In particular, we would like to thank Ginio, Ernesto, Leiden, dear mother and Proaño Mosquera family. In particular, we would like to thank Fabiola and Raúl Gudiño. Specially, we thank all Caimito and Quingue communities. Thank so much Rufford Foundation, Universidad San Francisco de Quito, CETACEA Project, USFQ for assistance in logistical and research resource to develop fieldwork and education activities.

9. References

- 1. Andriolo, et al. (2014). Zoology 31 (2): 105–113
- 2. Dunlop et al. (2010). Proceedings Royal Society B. 277, 2521–2529
- 3. Félix and Botero (2009). Paper SC/61/SH2 presented to the 61 Scientific Committee of the International Whaling Commission, Madeira, Portugal.
- 4. Felix and Haase (2005). Journal of Cetacean Research and Management. 7: 21–31.
- 5. Félix and Haase. (2001a). Revista de Biología Marina y Oceanografía 36: 61-74.
- Flórez-González (2007). Guidelines for a regional action plan and national initiatives). Fundacion Yubarta, Cali, Colombia. 106 pp.
- 7. García-Cegarra and Botero et al, Oña et al 2017, Valdivia et al 2017)
- 8. García-Cegarra and Pacheco (2016). Aquatic Conservation: Marine and Freshwater Ecosystems.
- 9. Garland et al. (2011) Curr. Biol. 21:687-691.
- 10. Garland et al. (2012) Behaviour 149:1413-1441.
- 11. Garland et al. (2013) J. Acoust. Soc. Am. 133:560-569.
- 12. Garland et al. (2015) Con. Biol. in press.
- 13. Guidino et al (2014). PLoS ONE 9(11):e112627
- 14. Intriago 2015. Bachellor thesis. Repository Universidad San Francisco de Quito.
- 15. Kavanagh et al 2017. Marine Mammal Science. 33:313-334
- 16. Lammers, et al 2011. Marine Ecology Progress Series. 423: 261-268
- 17. Miller et al. (2000). Nature 405, 903.
- 18. Narváez 2015. Bachellor thesis. Repository Universidad San Francisco de Quito.
- 19. Noad et al. (2000) Nature 408: 537.
- 20. Oña et al. (2012). Master Thesis. Repository Universidad San Francisco de Quito.
- 21. Oña et al. (2017). Marine Mammal Science. 33(1): 219-235
- 22. Pacheco et al 2013. Revista de Biología Marina y Oceanografía 48(1):185-191
- 23. Pacheco et al. 2011. Latin American Journal of Aquatic Research. 38(3) 189-196.
- 24. Payne and Guinee (1983) Communication and Behavior of Whales, pp. 333–358.
- 25. Payne and McVay (1971) Science 173: 585-597.
- 26. Payne and Payne (1985) Z. Tierpsychol. 68: 89–114.
- 27. Rolland et al. (2011). Proceedings Royal Society B. 1-5
- 28. Rubianes (2014). Master Thesis. Repository Universidad San Francisco de Quito.
- 29. Sousa-Lima et al. (2013). Aquatic Mammals 2013, 39(1), 23-53
- 30. Valdivia et al. (2017). Aquatic Mammals 43(3): 324-330
- 31. Winn et al. (1981). Behavioral Ecology and Sociobiology, 8, 41-46.

10. Annexes

a. Dat- Recorder (Digital Audio Tape), Digital Recorder sheets, and standardized metadata

X 🗐 🗸 🕐 • 🖙 DAT and Dioital Recorder 2014 - Microsoft Excel – 🗖 🗙																					
A	chivo	Ini	cio	Insertar Di	seño de página Fórn	nulas Dat	os Revis	ar	Vista	Nitro Pro 9	-									۵	() - # X
Pi	gar Por	∦ Cor ≧⊇ Cor ∛ Cor tapape	tar blar ▼ blar form les	Calibri N K			= ≫. = i≠ AI	ineaci	📑 Ajustar t 🔄 Combina	exto r y centrar * Gi	General ∰ - % 0 Núme	▼ 00 * 68 \$ 08 ro Fa	Formato condicional	Dar forma * como tabl Estilos	to Estilos de a * celda *	e Inserta	r Elimina Celda	ar Formato	Σ Autosum Rellenar Ø Borrar ▼	ordenar y filtrar * s Modificar	Buscar y eleccionar *
X22 • C f se observo lanchas turísticas y dos lanchas pesqueras artesanales														*							
	1	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0 F	> Q	L R	S	т	U =
1	SPW	RC ACC	OUSTIC R	CORDING DAT	A SHEET – DIGITAL RECOR	DER															<u> </u>
2	Acou	stic she	ets # 1-2	3									-								
3	Regio	on: Esm	eraldas					Acous	tician: Javier	Oña, Xavier	Recording device	e: Tascam DR-4	0								
4	-	Date	Encl	Filet	Ello contro	and starting	cton(him)	Vesse	: Fibergiass	(8.5m)	rivarophone/pr	eamp: nydropho	one Zono	Datum		avel bla		m)	#udible (ID)	CAU	and (knots)
6	10/0	16/2014	S S	TASCAM 0001	HS140610-0925-F	SM 92	5 927	002	0.9141406	-79 935779	101057 6341	618413.01	81 17N	WGS84	75	M	NA I	NA N		SINI N/	
7	10/0	6/2014	E	TASCAM 0002	HS140610-1101-E	SM 110	1121	004	1.0331898	-79.95733	114217.6716	616010.79	77 17N	WGS84	75	M	HW	50	2 HW	poor	2.5
8	10/0	6/2014	E	TASCAM 0003	HS140610-1216-E	SM 1216	5 1226	007	1.0181049	-80,007593	112548,2974	610418,26	02 17N	WGS84	75	M	HW	50	2 HW	average	2 3
9	13/0	6/2014	S	TASCAM_0001	HS140613-0912-E	SM 913	2 924	14	0,9657781	-80,09088	106761,1211	601152,29	47 17N	WGS84	75	M	DHP	20 10	0 HP (?)/ HW	poo	r e
10	13/0	6/2014	S	TASCAM_0002	HS140613-0956-8	SM 956	5 1003	15	1,0406989	-80,056825	115044,3087	604939,35	86 17N	WGS84	75	M	NA I	NA N	A NA	N	A 4
11	13/0	6/2014	S	TASCAM_0003	HS140613-1036-E	SM 1036	5 1053	18	1,0575187	-80,042232	116904,1677	606562,50	58 17N	WGS84	75	M	NA I	NA N	A HW	N	x 4
12	13/0	6/2014	E	TASCAM_0004	HS140613-1105-E	SM 110	5 1110	19	1,1162612	-79,965421	123400,807	615107,37	13 17N	WGS84	75	M	HW	20	2 HW	N/	N 5
13	13/0	6/2014	S	TASCAM_0005	5 HS140613-1141-E	SM 1141	l 1147	20	1,1002459	-79,859678	121634,6269	626874,45	89 17N	WGS84	75	M	NA I	NA N	A HW	very poor	4
14	13/0	06/2014	S	TASCAM_0006	5 HS140613-1209-E	SM 1209	9 1220	22	1,0795753	-79,801084	119351,9479	633395,55	33 17N	WGS84	75	M	NA I	NA N	A HW	very poo	r 4
15	19/0	06/2014	S	TASCAM_0001	L HS140619-0919-E	SM 919	9 922	28	0,8823995	-80,037673	97545,58266	607075,30	88 17N	WGS84	75	Mph	NA I	NA N	A NA	N/	A NA
16	19/0	06/2014	S	TASCAM_0002	2 HS140619-0925-E	SM 925	5 934	28	0,8823995	-80,037673	97545,58266	607075,30	88 17N	WGS84	75	Mph	NA	NA N	A HW	poo	r e
17	19/0	06/2014	S	TASCAM_0003	B HS140619-1020-E	SM 1020	1056	35	0,9778426	-80,052363	108095,9777	605437,8	53 17N	WGS84	75	Mph	HW 31	(m	1 HW	average	<u> </u>
18	19/0	06/2014	E	TASCAM_0004	HS140619-1113-6	SM 111	1118	37	1,0023905	-80,010695	110811,012	610073,62	86 1/N	WGS84	75	Mph	HW 50	m	4 HW	average	<u> </u>
19	19/0	06/2014 06/2014		TASCAM_0005	HS140619-1215-0	SM 121	1245	41	1,0140114	-80,005291	112095,845	6106/4,63	40 17N	WG584	75	Moh	INA I	NA N	a nw	good	
20	21/0	6/2014	C C	TASCAM_0000	HS140619-1301-0	SM 10:00	10:10	45	0,99991077	-79,900733	107568 734	613407,73	H9 17N	WGS84	70	M	NA I	NA N	2 FIW	average	
22	21/0	6/2014	\$	TASCAM 000	HS140621-1046-F	SM 10:00	5 11:01	52	1.0312045	-79.891275	114000.6884	623361 28	74 17N	WG584	70	M	NA	NA N	A HW	average	2
23	21/0	6/2014	E	TASCAM 0003	HS140621-1124-E	SM 11:24	11:29	56	1.0504744	-79.862992	116132 1317	626507.79	87 17N	WGS84	70	M	HW	50	7 HW	average	2
24	21/0	6/2014	s	TASCAM 0004	HS140621-1218-E	SM 12:18	3 12:30	58	1.069751	-79,831408	118264,5272	630021,63	41 17N	WGS84	70	M	NA I	NA N	A HW	average	- 4
25	05/0	07/2014	S	TASCAM_0001	HS140705-0941-E	SM 941	l 948	63	0,9186778	-79,972274	101558,0305	614351,7	48 17N	WGS84	60	м	HW	4	4 HW	poo	r e
26	05/0	07/2014	S	TASCAM_0002	HS140705-1019-E	SM 1019	1030	64	0,9983111	-79,989238	110360,7652	612461,40	74 17N	WGS85	60	M	HW	12	3 HW	poo	r s
27	05/0	07/2014	E	TASCAM_0003	B HS140705-1112-E	SM 111	1117	66	1,010471	-79,954654	111706,2297	616309,35	16 17N	WGS86	60	м	HW	13	5 HW	роо	r e
28	07/0	07/2014	S	TASCAM_0001	L HS140707-0914-E	SM 914	925	71	0,8886955	-80,01726	98242,17614	609346,65	52 17N	WGS84	60	M	HW	50	2 HW	average	2 4
29	07/0	07/2014	E	TASCAM_0002	HS140707-0950-E	SM 950	1000	72	0,9045392	-80,069341	99992,12011	603550,79	24 17N	WGS84	60	м	HW		2 HW	poo	<mark>r 4</mark> ~
14	< >	H D	ata She	et-Dat Record	er / Metadata-DAT I	Recorder	Data Sheet	t- Dig	ital Record	ler Met	adata-Digital R	ecorder /	Anne 4								▶ [
Lis	to																		III II 80	% 😑 —	Q: •
	C		%	0			-	5.	ø	W					-				- ân (-	•	9:35 05/05/2017

X	(<u>a</u> a) + (a + +	DAT and Digital Recorder_20	14 - Microsoft Excel	-	
An	chivo Inicio Insertar Diseño de página	Fórmulas Datos Revisar Vista Nitro Pro 9		۵ (3 - 6 x
Pe	Copiar → Copiar → Copiar formato Portananeles Filente Portananeles Filente	· ▲ · = = = ≫· ar Ajustar texto General · ▲ · = = = ar	Formato Dar formato Estilus	Dos de Ida → Cridas → Cridas → Cridas	Buscar y eleccionar *
		a Paneacon a Name	5 13 ES1105	celus	
					P
	A	В	C	D	-
					Ø
1				1	_
2	Name/Nombre	Descripcion	Categorias	Nombres Equipo de Investigacion	
3	Acoustic sheet/Hoja datos acustica	numero de la hoja de campo para grabaciones acusticas diarias	secuencial	1	
4	Acoustician/Investigador en acustica	nombre del investigador, estudiante, voluntario o tesista que realice la gra	nombre y apellido	ej: Javier Oña, Xavier Jacome, Geovanna Jacome, etc, etc	
5	Recording device/ dispositivo de grabacion	se refiere al modelo o marca del dispositivo de grabacion utilizado en el mo	campo abierto	ej: TASCAM DR-40	
6	Region	nombre de la localidad en que se realizo la grabacion	campo abierto	ej: Esmeraldas- Ecuador	
7	Vessel (embarcacion)	tipo de embarcación en que se realizo la grabacion	campo abierto	ej: fibra de vidrio (8.5m)	<u></u>
8	Hydrophone (hidrofono)	tipo de hidrofono	campo abierto	ej:	윈
9					
10	DAT RECORDER				
11	Date	fecha que se realiza la grabacion	Dia/Mes/Año	ej: 25/06/2016	_
		se refiere al monitoreo acustico por encuentro con un individuo o grupo			3
		de ballenas o delfines (E). Se refiere al monitoreo acustico de rutina para			205
12	Encounter/ Routine Sample	las paradas acusticas (S)	E/S	E/S	
		nombre del archivo o audio asignado por la grabadora			_
13	File #				
13 14	File #	nombre cambiado del archivo una vez transferido a la computadora	HS año/mes/día-hora inicio-localidad (HS=	ej: HS140811-0847-ESM/HS060918-0910-TG	-
13 14 15	File # File renamed Start (h:m)/	nombre cambiado del archivo una vez transferido a la computadora hora de inicio de la grabacion	HS año/mes/día-hora inicio-localidad (HS= h:m	ej: HS140811-0847-ESM/HS060918-0910-TG ejs: 945; 0004;1234	
13 14 15 16	File # File renamed Start (h:m)/ Stop (h:m)	nombre cambiado del archivo una vez transferido a la computadora hora de inicio de la grabacion hora final de la grabacion	HS año/mes/día-hora inicio-localidad (HS= h:m h:m	ej: 945; 0004;1234 ejs: 945; 0004;1234 ejs: 956; 0017; 1256	•
13 14 15 16	Hie # File renamed Start (h:m)/ Stop (h:m) > N Data Sheet-Dat Recorder Metadal	nombre cambiado del archivo una vez transferido a la computadora hora de inicio de la grabacion ĥora final de la grabacion a-DAT Recorder // Data Sheet- Digital Recorder // Metadata-Digital R	HS año/mes/día-hora inicio-localidad (HS= h:m h:m ecorder Ann(i) 4 III	ej: H5140811-0847-E5M/H5060918-0910-TG ejs: 945; 0004;1234 ejs: 956; 0017; 1256	▼
13 14 15 16 14 Lis	He # File renamed Start (h:m)/ Stap (h:m) Stap (h:m)	nombre cambiado del archivo una vez transferido a la computadora hora de inicio de la grabacion hora final de la grabacion a-DAT Recorder Data Sheet- Digital Recorder Metadata-Digital R	HS año/mes/día-hora inicio-localidad (HS= h:m h:m eccorder Ann(1) 4 III	ej: H5140811-0847-E5M/H5060918-0910-TG ejs: 945; 0004;1234 ejs: 956; 0017; 1256	► I • I

b. Scientific Regional Collaboration

Memorandum of Understanding for Scientific Cooperation between UFRN Laboratory of **Bioacoustics, Brazil and Ecuador CETACEA Project.**

the four following criteria according to "Best Practice Guidelines on Publishing Ethics":

- 1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; and
- 2. Drafting the work or revising it critically for important intellectual content; and
- 3. Final approval of the version to be published; and
- 4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

FOURTH - DURATION AND RENEWAL OF MOU

- a. The agreement shall come into effect on April 2017. Changes to this agreement shall be made by mutual consent between both parties. In cases of disagreement, the University wishing to depart from the agreement shall, wherever possible, give three months' notice of its intention to do so.
- b. In order to promote future scientific exchanges both parties shall actively evaluated the success of scientific products during the PhD program.
- Correspondence about this agreement shall be conducted between the representatives of CETACEA Project, Ecuador, and UFRN Laboratory of Bioacoustics, Brazil

Quito, Ecuador, 01/04/2017

Sincerely,

MSc. Javier Oña Affiliate Researcher and Coordinator **Bioacoustic Program CETACEA Ecuador Project** Universidad San Francisco de Quito

MSc. Divna Djokic **PhD** Candidate UFRN PhD program on Psychobiology, Brazil

Dr. Judith Denkinger **Director CETACEA Ecuador Project** Universidad San Francisco de Quito

Dr. Renata Sousa-Lima **Professor of Animal Behavior** Laboratory of Bioacoustics Universidade Federal do Rio Grande do Norte

Javier Oña Jubns Tokut

Doc ID: 19cd58d9eb0a786fe3999c09ecb8462f460cb55a

Acuerdo de entendimiento para cooperación científica entre representantes del Grupo Mastozoología, Universidad de Antioquia, Colombia, y el proyecto CETACEA Ecuador.

Firman en señal de lo acordado,

Quito, Ecuador, 01/03/2017 Medellín, Colombia, 01/04/2017

M.Sc. Javier Oña Affiliate Researcher and Coordinator Bioacoustic Program CETACEA Ecuador Project

Esteban Duque B.Sc. Candidato Universidad de Antioquia, Colombia

Dr. Judith Denkinger Director CETACEA Ecuador Project Universidad San Francisco de Quito, Ecuador

Dr. Sergio Solari Tutor Principal Profesor, Coordinador del Grupo Mastozoología Universidad de Antioquia, Colombia

avier O

c. "Introduction Bioacoustic of Humpback Whale" workshop

- d. Spectrogram and acoustic parameter extraction
- e.

7						Raven P	ro 1.5 Beta	Version								_ 3 ×
Eile Edit View Window Iools Help																
	88		8 8 9	88	88	3	1. De [I 4 E	1 🐺 (q		Rate: 1.0					
2 C X B B B	8 🖻 🛤			₩ ▶		2	*		5	<u> </u>	(~	50		—	1489
	■ + 🗄 G				Po 🖪 🕽	4 X 9	୍ର୍୍ ®୍	Q [■			1					
Views:	Sound 1: G	OPR2399 comp	ortamiento ba	allenas crudo	o.wav											۰́ ت 🛛
Waveform 1																
Color Bar 1	13-															
	12-															
	11-															
	10-															
	9-						100									
Lines: 1	8-	the second second				100										
Group By: View	7-			1												
	5-			1		19 4 2 3										_
Channels:	4															
	3-			4.3												
	2-		T			-242					्य प					
Components:	1-				23	<u> </u>							THE P	125		
Axes	0.00 -								· · ·							-
Axis Titles	m:s	1:25	5.5 1:25.671	1:26		1:26.	5	1:27		1:27	.5	1:28	3	1:2	8.5	1:29 I
Line Titles																
Position Markers	Table 1															
Selection Borders	*Selection Tab	le											Draw	1	**	Delay: 5 S 🗏 🚹
Selection Control Point:	Selection	View Channel	Begin Time	End Time	Delta Freq	BW 90%	Delta Time	Dur 90%	Freq 5%	Freq 95%	Peak Freq	High Freq	Low Freq	Name		
Selection Fill			(s)	(S)	(Hz)	(Hz)	(s)	(S)	(Hz)	(Hz)	(Hz)	(Hz)	(Hz)			
Selection Labels		1 1	85.061	85.538	12975.6	1378.1	0.477	0.2	689.1	2067.2	818.3	13132.2	156.5			_
Selection Table	9	1 1	85.653	86.053	13221.1	1765.7	0.401	0.3	387.6	2153.3	861.3	13325.8	104.6			
Layout Linkage			86.208	86.612	7688.2	3014.6	0.404	0.3	624.5	3639.1	1550.4	7688.2	101.6			Ę
Selection Review																
Information																A.
		w				PDF		-		-	-	Contraction of the	-	-		. 15:54
🔚 🕅 🚺			2		7										1 Da	09/05/2017

f. Cleaning beach and drawing concourse

g. Spreading and educational products

CENTRO DE INVESTIGACIÓN "CAIMITO"

MONITOREO ACÚSTICO Y VISUAL DE BALLENAS Y DELFINES

"Investigación, educación ambiental y conservación"

ECUADOR

PROYECTO CETÁCEA

ESMERALDAS - ECUADOR

h. International Congress: Scientific presentations CETACEA team

Oral presentation. Evolution in song patterns of humpback whales (*Megaptera novaeangliae*) during the breeding season 2012, 2013, and 2015 off the coast of Esmeraldas, Ecuador. Workshop "2nd Listening for Aquatic Mammals in Latin America" (LAMLA). Valparaiso, Chile 26th and 27th November 2016.

Oral Presentation. Occurrence of humpback whale songs (*Megaptera novaengliae*) in breeding grounds off the coast north of Ecuador. SOLAMAC Conference-Valparaiso-Chile 28 November to 01 December 2016.