Detection and Documentation of Forest Diseases in Jigme Dorji National Park in Bhutan for Forest Conservation

Progress Report Submitted to the Rufford Foundation In fulfillment of the objectives of the project

Researcher

Phurpa

Master in Forestry

(Forest Pathology)

Under the Supervisor of

Dr. N.S.K.Harsh,

Scientist-G.

Forest Pathology Division

Co-supervisors

1 **Mr. Loady Phuntsho** Deputy Chief Research Officer RNR DCW, MoAF, Bhutan 2 Mr. Karma Thubten Forest Officer UWICE Bhutan

Si No.	Section	Page No.
D	Acknowledgements	ii
E	List of figures	iii
F	List of tables	iii
G	List of annexures	iv
Н	Abbreviations	iv
Ι	Abstract	V
1	Introduction	1-2
2	Review of literatures	3-5
3	Materials and methodology	6-12
4	Results and discussions	13-21
6	Conclusion	22-23
7	Bibliography	24-25
8	Annexures	26-40

Table of contents

Acknowledgements

It is pleasant aspect and opportunity to express my gratitude and my heart will unaccomplished without acknowledging the overwhelming help and support I received during this endeavor.

With deep respect, I express my heartfelt gratitude to my advisor Dr. N. S. K. Harsh, Scientist-G, Forest Pathology Division, Forest Research Institute, (Indian Council of Forestry Research and Education) Dehradun, Mr. Loady Phuntsho, Deputy Chief Researcher, Ministry of Forest and Agriculture and Mr. Karma Thubten, Ugyen Wangchuck Institute for Conservation and Environment, Bhutan, for pragmatic suggestions, erudite guidance, warm appreciation and friendly cooperation and for maintaining diligence and interest for my project throughout my candidature.

I heartedly thank the Department of Forest and Park Service, Bhutan, Mr. Lhendrup Tharchen, Park Manager, Mr. Sangay Dorji, Research Officer, Ranges Officer and staff of JDNP for the kind cooperation, critical comments and lovely support during the course of data collection. I also thank the Head and staff of Forest Pathology Division, Forest Research Institute, Dehradun, India for kind support, comments and suggestions.

I am immensely thankful to Rufford Foundation for funding this project which is helpful in conservation for maintaining the biodiversity in Bhutan. I also thank all the friends and family which helped me in conducting this project in the best possible manner.

(Phurpa)

List of figures

Figure No.	Title	Page No.
1	Study area (Jigme Dorji National Park, Bhutan)	6
2	Land used classification of Jigme Dorji Nation Park, based on satellite image (LISS III)	8
3	Disease incidence and severity index percentage	15
4	Disease severity and types percentage	16
5	Bray-Curtis linked cluster dendrogram for the hosts, calculated using total number of pathogens per host	18
6	Pathogen percentages with respect to aspect	19
7	Predisposing factors of forest disease (%)	20
8	GBH class line fit plot	21

List of tables

Table No.	Title	Page No.
1	Important fungal diseases outbreak which has led to notable	3
	changes in the forest landscape in world.	
2	Average area of forest annually affected by diseases by region	3
	and sub region.	
3	Virulent forest pathogens reported in India.	4
4	Common disease of selected trees of Nepal.	5
5	Forest disease in Bhutan	5
6	Disease scoring scale for assessing the diseases severity.	12
7	Fungal pathogen from JDNP, its incidence percentage and	13-14
	abundance.	
8	Pests from Jigme Dorji National Park, its incidence	14
	percentage and abundance.	
9	Parasites from Jigme Dorji National Park, its incidence	14
	percentage and abundance.	
10	Pathogen diversity index of host species (JDNP).	14
11	Disease type rate in JDNP ranges	16
12	Chi- square test for pathogens abundance variation in JDNP	17
	ranges.	
13	Pathogens percentage similarity matrix.	18
14	Chi-square test for significant variation in proportion of	20
	pathogens in pure and mixed forest.	
15	Descriptive analysis of pathogens in each GBH class.	21

List	of	annexures
------	----	-----------

Annexure No.	Title	Page No.
1	Questionnaire for purposive sampling	26
2	Diseases characterisation in field	27
3	Fruting body of fungal pathogens	28
4	Pure culture of pathogens	29
5	Forest pest (Ips longifolia) and damages	30
6	Fungal pathogens and damange	31-32
7	Flowering mistletoes	33
8	Sampling units in JDNP ranges	34-35
9	Disease abundance in each sampling unit	36
10	Pathogen diversity calculation	36-38
11	Forest disease severiy calculation	39-40

Abbreviation

AOI	: Area of Interest
CDB	: Convention on Biological Diversity
CITES	: Convention on International Trade in Endangered Species of Wild Flora and Fauna
D	: Sipmson's index
DED	: Dutch elm disease
DoFPS	: Department of Forest and Park Services
DSI	: Disease Severity Index
E	: Pielou index
ERDAS	: Earth Resources Data Analysis System
FAO	: Food and Agriculture Organisation
GBH	: Girth at Breast Height
GFRA	: Global Forest Resources Assessment
GIS	: Geographical Information System
GNH	: Gross National Happiness
GPS	: Global Positioning System
H'	: Shannon index
IPM	: Integrated Pest Management
ISPM	: International Standards for Phytosanitary Measures
IUCN	: International Union on Conservation of Nature
IUFRO	: International Union of Forest Research Organizations
JDNP	: Jigme Dorji National Park
NEC	: National Environment Commission
RGOB	: Royal Government of Bhutan
SD	: Standard Deviation
UNCCD	: United National Convention to Combat Desertification
UNFCCC	: United National Framework Convention on Climate Change

Abstract

Forest diseases are important limiting factors for structure and composition of healthy ecosystems, productive and protective equation, yet finding the references about forest disease in Bhutan is challenging. This study investigated 3,442 coniferous trees in JDNP belonging to 4 genera, 6 species and confirmed a total of 20 forest pathogens, 15 fungi belonging to 11 families, 3 mistletoes belonging to 2 families and 2 insect pests belonging to 2 families. Shinnon Wiener and Simpson diversity index (0.0001-2.4999, 0.000-0.8000) concluded that hosts have low to medium pathogens diversity with average of host to pathogens ratio 1:4. However, each host's pathogens are evenly distributed according to Pielou evenness index (0.7500-1.0000). Mean disease incidence percentage was 28.8 (SD=13.21) and disease severity index was 0.415 (SD=0.165) and shown that disease incidence and severity index have significant relationship (r=0.9, p=0.05). Further, disease incidence was directly proportional to increase in altitude (r=0.88) and GBH (r=0.88). multiple R=0.94, p<0.05). Study also showed significant variation of pathogens abundance in JDNP ranges ($\chi 2=58$, df=4, p=0.05) and confirmed 65% of diseases in pure forest and 35% in mixed forest ($\chi 2=0.14$, p=0.05, df=1). Most of fungal diseases were seen in northern aspect however, mistletoes and beetles were seen in southern aspect. Study concluded that there were different dominant predisposing factors for each hosts and only 19.16% of pathogens were sharing same host.

Key words: Forest disease, conifers, JDNP, pathogens, diversity, severity, incidence, index, predisposing factors.

INTRODUCTION

The contributions of forests to the well-being of humankind are extraordinarily vast and far-reaching. Forests play a fundamental role in combating rural poverty, ensuring food security and providing decent livelihoods (FAO, 2010). They provide critical refuge for terrestrial biodiversity and a central component of the earth's biogeochemical systems with potential to mitigate climate change by serving as net carbon sinks (Shvidenko *et al.*, 2005; IPCC, 2007). They also offer promising opportunities and deliver vital long-term environmental services and Bhutan's 72% of forest is not an exception. It is estimated to sequester 6.3 million tons of CO₂, provide ecosystem services worth 15.5 billion US\$ per/year, home for IUCN Red lists, livelihood for 69% of rural population and watershed which contribute 12.5 billion US\$ annually by hydropower (DoFPS, 2011; Dorji, 2016).

Having magnificent dependence and correlations with forests, Government of Bhutan Constitution (2008) authorized, its citizens the fundamental right and trustees to conserve and protect the forests. It also has a mandate to conserve 60% of forest cover for perpetuity. Bhutan is also member of many forest related international parties and conventions such as; Convention on Biological diversity (CDB), United National Convention to Combat Desertification (UNCCD), the United National Framework Convention on Climate Change (UNFCCC), the Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES) and International Plant Protection Convention (IPCC) (Wangdi *et al.*, 2014). Beside these, Forest Policy of Bhutan (1974, 2011), Forest and Nature Conservation Act (1995), Forest and Nature Conservation Rule (2006), Traditional Social Restriction System, Buddhist principles and Gross National Happiness (GNH) vision are the guardian and guiding principles for management, conservation and protection of Bhutanese pristine forests (Wangdi *et al.*, 2014).

However, forest diseases constitute major biological deterrents of forest conservation, health and productivity. Because of insidious nature of pathogens and non-infectious diseases of forests, losses due to them are not fully realized unlike those from insects and fire where damage becomes evident (Bakshi, 1976; Agrios, 2006; Cooke and Jones, 2006). Hepting and Jemison (1957) have reported that losses from the forest diseases exceeded the combined losses from fire and insects. Boyce (1948) also supported above idea from the study of Indian forest (Agrios, 2006). To add on issues, epidemic diseases and new virulent pathogens could be increased due to climate change. It would encourage warmth loving pathogens and climatic stress (dryness, water logging, soil acidification, etc.), which could reduce the resistance of trees to diseases (Porta *et al.*, 2008; Sturrocka *et al.*, 2011). The Fifth World Forestry Congress, held in Seattle (1960), agreed that a catastrophic loss of tree species to disease would occur (FAO, 1960). Further, FAO/IUFRO Symposium on Internationally Dangerous Forest Diseases and Insects (1964) and Second International Forest Disease Conference (1975) held in New Delhi, India urged in order to manage our forests wisely for current and future generations for the productive and protective functions, it is vital to have a clear understanding of forest diseases (FAO, 1965).

Forest diseases decline of *Abies densa* and outbreak of *Ips schmutzenhoferi* on *Pinus spinulosa* and *Pinus wallichiana* and *Ips longifolia* on *Pinus roxburghii* has been started from 1980s in Bhutan. These outbreaks have shown that diseases and insect pests can pose a great threat to forest management, conservation and biodiversity of Bhutan (Donaubauer 1986, 1987, 1993; Tshering and Chhetri 2000, Dorji 2007). However, Bhutan is unprepared in the forest pathology discipline and finding the references about forest diseases is not an easy task due to the lack of forest pathologist, forest disease research and documentation in Bhutan.

This present study has objectives to fill this major gap in the forestry pathology discipline by studying the forest diseases in JNDP. It will give the baseline data on diversity of pathogens, disease severity and incidence which will play vita role in conservation activities in Bhutan

REVIEW OF LITERATURES

Potential forest pathogens and diseases outbreak in international, regional and national which had significant impact in forestry history are given below.

Table 1 Important fungal diseases outbreak which has led to notable changes in the forest landscape in world (Heiniger, 2003)

Pathogen	Diseases name	Affected species	Country	Outbreak
Cryphonectria parasitica	Chestnut blight	Castanea dentata	USA, Europe	1990
Ophiostoma ulmi	Dutch elm	Ulmus	Europ	1910
Ophiostoma novo-ulmi	New Dutch elm	Ulmus	Europ	1975
Ceratocystis fimbriata	Plane tree wilt	Platanus	France	1960
Cronartium ribicola	White pine rust	Pinus strobus	USA	1906
Phytophthora ramorum	Sudden oak	Quercus sp	Switzerland	2004
Fusarium solani	Sissoo mortality	Dalbergia sissoo	India	2000

Table 2 Average area of forest annually affected by diseases by region and sub region (FAO, 2010)

	Number of	% Of Forest	Area of Forest Affected
Region / Sub-region	Countries	Area	by Diseases (Hectare)
Eastern and Southern Africa	4	4.7	n.s
Northern Africa	2	1.3	n.s
Western and Central Africa	4	5.3	4000
Total Africa	10	4.6	4000
East Asia	3	92.7	3,94,000
South and Southeast Asia	4	26.2	n.s
Western and Central Asia	12	42.6	4,1000
Total Asia	19	54.9	3,90,000
Europe Excl. Russian	33	71.8	17,86,000
Total Europe	34	94.6	29,18,000
Caribbean	6	48.9	n.s
Central America	1	18.9	n.s
North America	2	9.7	19,000
Total North and Central America	9	10.3	19,000
Total Oceania	4	4.7	3,20,000
Total south America	4	10.5	1,13,000
World	80	36.3	37,64,000

Forest Pathogens	Hosts (examples)		
Phellinus badius	Acacia catechu, Acacia nilotica, Albizzia sp.		
Phellinus durissimus	Casuaria sp, Shorea robusta		
Phellinus caryophylli	Mallotus philippinessis		
Phellinus gastropus	Pinus wallichiana, Tsuga sp.		
Fomitopsis pinicola	Pinus kesiya and Quercus sp.		
Fomes formentarius	Quercus sp, Picea sp, Tsuga sp, Juglans sp.		
Phellinus pini	Pinus wallichiana		
Phellinus sulphurascens	<i>Tsuga</i> sp, <i>Abies</i> sp.		
Heterobasidion annosum	Conifers		
Ganoderma appalatum	Dalbergia Sisso, Tectona grandis, Acacia nilotica		
Ganoderma lucidum	Wide host range (Around 120 tree species)		
Heterobasidion insularis	Tsuga sp and Pinus wallichiana		
Armilaria mellea	Most conifers		
Laetipors sulphereus	Tsuga sp, Quercus sp, Pinus sp.		
Pleurotus ostreatus	Acacia sp, Eucalyptus sp, Tsuga sp		
Rhizoctonia solani	Acacia sp, <u>Albizia</u> sp. and other legume trees		
Fusurim oxysporum	<i>Albizia</i> sp		
<i>Pythium</i> sp	Abies procera,		
Phytophtbora sp	Pinus sp. Eucyclaptus sp.		
Cronartium ribicola	Pinus sp		
Rhizina undulate	Conifers on burnt sites, Pinus sp, Tsuga sp,		
Glomerella cingulate	A. mangium.		
Cylindrocladium	A. mangium, A. auriculiformis		
quinqueseptatum			
Alternaria sp	Malus domestica, Pyrus sp		
Verticillium sp	Acer sp. Ulmus sp.		

Table 3 Virulent forest pathogens reported in India (Bakshi, 1971; Ravarden andJohansen, 1980)

Tree	Pathogens	Disease nature
	Conifers diseases	
Cedrus deodara	Heterobasidion annosum, Peniophora luna	Butt & trunk rot
Abies pindrow	Fomes fomentarius, Phellinus. robustus, P. pini	Root rot , Heart rot
Pinus roxburghii	Cronartium himalaynese, Phellinus pini, Fomitopsis pinicola, Ganoderma applanatum	Needle rust, heart rot
Pinus wallichiana	Phellinus pini	Heart rot
	Hardwood disease	
Acacia catechu	Ganoderma lucidum, Phellinus badius	Root rot, heart rot
Dalbergia sissoo	Fusarium solani, Ganoderma lucidum,	Wilt disease, root rot.
Shorea robusta	Aurificaria shoreae, Hymenochaete rubiginosa, Phellinus caryophulli, P. fastuosus	Root rot disease, Hear rot
Tectona grandis	Peniphora rhizomorphosulphurea, Corticium salmonicolour	Root rots disease, Pink disease.
Santanum album	Mycoplasma	Spike disease
Eucalyptus hybrid	Corticium salmonicolour, Ganoderma lucidum	Pink disease, root rot

Table 4 Common diseases of selected forest trees of Nepal (Forestry, 2010)

Table 5 Forest Diseases in Bhutan (Donaubauer 1986, 1987, 1993: Donald *et al, 2003:*Chhetri and Tenzin 2012: Tshering and Chhetri 2000 :Konrad 2006 : Dorji 2007)

Name of diseases	Affected tree	Cause/ Pathogen	Reported
Mortality	Pinus wallachina and Pinus spinulosa	Ips schmutzenhoferi	1988, 2000, 2002
Dieback	Pinus wallachina	Drought	1994, 1999, 2001, 2003 and 2008.
Mortality	Pinus roxbirghii	Ips longifolia	1980's
Dieback	Abies densa	Prolonged drought	1993
Parasitism	Pinus wallachina and Pinus roxburghii	Arceuthobium minutissimum and Taxillus kaempferi	1986

MATERIAL AND METHODS

3.1 Study area

Gazetted in 1974 as a wildlife sanctuary, Jigme Dorji National Park (JDNP) was officially upgraded to a National Park in 1993 and functionally operate with an area of 4,316 km² situated between 27.83'09.61"N and 89.77'55.33"E. JDNP is one of the oldest and second largest protected areas in Bhutan which covers the 5 districts of the Western Bhutan. JDNP is considered as conservation jewel, for housing many of worlds threatened flora and fauna (Tharchen,2013; Thinley *et al.*, 2015).

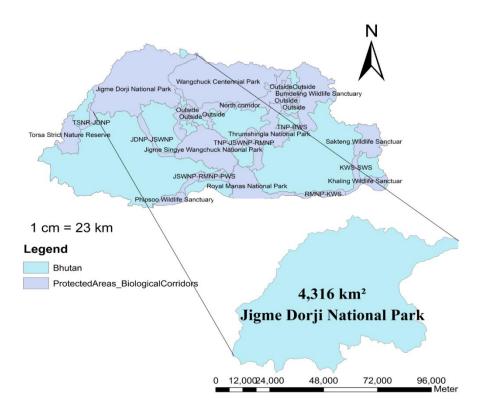


Figure 1 Study area (Jigme Dorji National Park, Bhutan)

JDNP alone contribute to 4% of the country' GDP. It provides Nu 81.54 million worth of resources to the Park residents on annual basis. At the regional level the Park provides ecosystem services worth of Nu 19.86 million and 1125.19 million at the national level considering that JDNP is conservation jewel (Thinley *et al.*, 2015). Therefore, the conservation, management and protection of forests are crucial for the survival of rich flora and fauna for rich biodiversity and the economic contribution

3.2 Materials

Weighing balance (Anamed) was used for weighing chemicals and culture media. The pH of the solution and culture media were adjusted using HCL/NaOH and checked with digital pH

meter (Eutec Instrument). Glassware (Borosil) were sterilized in a hot air oven (Wieber) and culture media in an autoclave (NSM 227). Mircowave Oven (IFB-30SC2) was used to liquefy culture media and BOD incubator (NSW Caltan) was used for the culturing of fungi. Refrigerator (Zenith) was used for the storage of the cultures. All the isolation and culturing works were carried out under aseptic conditions in a Laminar air flow (Saveer Biotech). Binocular research microscope (Leica) was used for the microscopic studies of the cultures and slides of the samples. Paper bags were used to collect samples and GPS to take the coordinate and altitude of the sampling site. Hammer was also used to detect the heart rot of trees and measuring tape for measuring the DBH of the trees. Digital camera was used to take photograph of the samples and isolates.

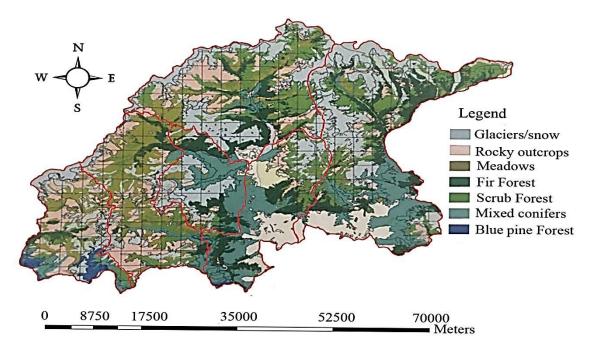
3.3 Methodology

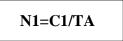
Research design such as Detection programmes and Purposive sampling techniques for forest diseases data were adopted.

3.3.1 Detection programmes:

3.3.1.1 Remote Sensing and GIS

Topographic maps of study area (scale 1:50,000) were scanned and transferred to ERDAS IMAGINE 8.7 for geo -referencing. Satellite image of study area was extracted from IRS-1D-LISS-III from USGS site and was rectified with topographic map of study area in ERDAS IMAGINE. After rectification subset of AOI (area of interest, JDNP) was classified into different land uses (agriculture, forest, settlement, snow and river, etc.) and different forest class (Fir forest, Conifer forest, mixed forest, Broadleaved forest and Scrub forest) as shown in Figure 2 using the non-supervise classification in ERDAS IMAGINE to use in area sampling.




Figure 2 Land used classification of Jigme Dorji Nation Park, based on satellite image (LISS III)

3.3.1.2 Area Sampling.

JDNP was divided into six Ranges and was considered as separate area. In each range with use of Remote Sensing and GIS forest was classified into different forest class which was called as Clusters (smaller area). The ground truthing was performed with the help of Park officials. A total of 100 sampling units (50m *50m) were drawn randomly (20 in each range) and framed datasheets (annexure 2) were used to study diseases in clusters having tree species of interest.

Number of sampling units required

According to JDNP, Soe range, Lingzhi range, Gasa range, Ramina range and Laya range have average of 629 km² area. By using the given formula number of sampling units required was calculated and 20% sampling intensity was taken.

Where, N1=Maximum number of sampling unit needed

- C1= Size of the cluster (ha) or area of interest
- TA= Size of sampling plot (ha)

Calculation

Average area of five range of JDNP= $629 \text{km}^2 \sim 600 \text{km}^2$ Therefore, number of sampling unit required = $600,000 \text{m}^2/2500 \text{m}^2=240$ By taking 45% of sampling intensity=45/100*240=108 sampling units But taking the consideration of other methods employed (field surveillance on

But taking the consideration of other methods employed (field surveillance and purposive sampling), only 100 sampling units were taken.

3.3.1.3 Field surveillance

Forest disease detection depends upon the area the surveillance covers in forests and the intensity of surveillance. Since study area is protected area, field surveillance was done by foresters as regular assigned duties. Along with regular assigned forest surveillance, field surveillance for the study was done. Foresters were apprised about diseases symptoms to get exact information on types of diseases, species affected and location and magnitude as the site was known by the foresters.

In field surveillance, 5 meter area on both sides of the path was studied. Distance and area covered was marked with the help of GPS to see total area covered by surveillance. Framed datasheets was used to study diseases encountered in surveillance. Field surveillance covered a total area of 1.01km² (Total Length=102km: Breath=0.01km (5m on either side). Data were collected using the field datasheet (Annexure 2) and the samples were taken for laboratory analysis.

3.3.2 Purposive sampling

3.3.2.1 Questionnaire

Questionnaire was framed with the help of FAO website (Food and Agriculture Organisation) which is used for conducting research on forest diseases globally. Questionnaire was conducted from 5 District Chief Forest Officers (Thimphu, Paro, Haa, Gasa, Phunakha and Wangdue Phodrang) and Park Manager (Jigme Dorji National Park) which fall under the study area. Questionnaire was also done with the Forest Protection and Enforcement Division under Department of Forest and Park Service (Annexure 1).

3.4 Sample collections

Plant parts with recognizable signs and symptoms of diseases were collected. Special attention was paid to collect plant pathogens such as sporophores. Diseased portion of bark, stem and roots were also collected. Stem tissues from the leading edge of the lesion were removed with the help of sterile scalpel and collected. In case of root specimens, excess soil

particles were removed in running water. Roots were carefully teased using scalpel or forceps. Sporophores of the heart rot causing fungi were collected in a way so as to include all morphological features of the sporophore. Details of the diseases and hosts infected were recorded in datasheet (Annexure 2) and samples were taken for laboratory analysis.

3.5 Isolation techniques

Disease specimens such as heart rots, roots, etc. were carefully examined to see the mycelium of the fungi. With the help of sterilized forceps about 5mm of mycelium along with plant tissue was cut and placed for surface sterilization. In case of roots samples, after washing in running water 5mm of roots were carefully teased using scalpel and forceps and placed for surface sterilization. From sporophores found on each host small piece from context was taken out with sterilized forceps and placed for surface sterilization.

3.6 Surface sterilization

The samples were surface sterilized by immersing in the mercuric chloride (0.1%) or ethanol (70%) for 1 minute. After that they were washed thoroughly in sterilized water for at least 3 times. With the help of sterilized forceps the sample were transferred to Petri plates containing PDA media (all media used have 0.2 or 0.5% antibacterial agent streptopenicillin or streptomycin).

3.7 Inoculation, incubation and purification

Multipoint inoculation was attempted usually by 5 bits of samples per Petri plate. For each sample two Petri plates were kept. Single point isolation was also attempted. Inoculated Petri plates were transferred to incubation room maintained at a temperature of 25±2°C and humidity of more than 90%. In order to obtain adequate growth and sporulation of fungal colonies alternate 12h dark and light was provided for seven days. After seven days of inoculation fungal isolates from the Petri plates were purified by sub-culturing and pure culture was obtained.

3.8 Identification of fungal pathogens

Sections of the sporophores were cut and details of the context, hymenium, texture, colour, hyphae, etc., were recorded. Slides from sporophore were made for taxonomic identification. The morphology of the culture was studied using both simple and compound binocular microscope. Details of fungal colony, growth rate, texture, smell and other important characteristics were recorded and matched with the cultural characters described by Stalpers (1978). They were also authenticated by matching with the cultures maintained in National

Type Culture Collection maintained by Forest Pathology Division, Forest Research Institute, India.

3.9 Data analysis

3.9.1 Biodiversity index of forest pathogens

Pathogen diversity in each host was tested using the Shannon-Wiener index (1949) and Simposon's index. These indexes incorporate both components of biodiversity (evenness and richness) and it provides a simple, synthetic summary in a single index

Where pi=S/N

Shannon index (H') = $-\sum pi \ln pi$

S=Number of individual of one species N=Total number of all individuals in the sample Ln=logarithm to base e

Simpson's diversity index D =1- $\sum p^2 i$

Where pi= S/N

S=Number of individual of one species N=Total number of all individuals in the sample

3.9.2 Pathogens evenness

Pielou's evenness (e) (1966) was used to calculate pathogens evenness index

$$e = H'/(Ln S)$$

H'=Shannon-Wiener diversity index

S=total number of species in the sample

3.9.3 Pathogen similarity

Statistical software, Biodiversity professional (version 2, 1997) was used to compute the Bray-Curtis index (1957) for pathogen similarity in each host species

3.9.4 Assessment of Disease Severity and Incidence

Diseases severity assessment was made in each disease encounter and it was rated on numerical scale (0-3). The average disease severity index (DSI) for each species was calculated from the sum of total number of trees of each disease severity rating (DSR) in all the plots multiplied separately by the disease index (1 - 3) and dividing it by the total number of trees assessed (N) as given in the following formula.

Disease severity (DSI) =n L x 1 + n M x 2 + n S x 3/N

Where: nL, nM, nS = Total number of trees with Low, Medium and Severe disease severity

1, 2, 3 = Low, Medium and Severe respectively

N = Total number of trees assessed in all the observation plots.

The per cent disease incidence was calculated from the total number of plants affected (nd) and total number of plants observed in all the plots (N):

Percent disease incidence = nd/N*100

Table 6 Disease scoring scale for assessing the disease severity (adopted from Sharma *et al.*, 1985; Kumer, 2007)

DS	Foliage infection	Heart/root infection	Shoot infection	Parasites infection
Nil (0)	No disease	No disease	No disease	No disease
Low (1)	Up to 25%	Less than 5%	Dieback of branch (>25%)	Parasite 1-5%
Medium (2)	25-50% and >10% defoliation	Between 5- 10%	Dieback of branch (>50%)	Parasite between 5-25%
High (3)	50-75% or >25% Defoliation	More than 10%	Extensive dieback and death of tree	More than 25%

3.9.5 Test and other tools

Non parametric chi-square test was performed to test the significant difference in proportion to pathogen in pure and mixed coniferous forests and to see the variation in pathogen abundance in JDNP range. Descriptive analysis, linear regression, Pearson correlation between the disease incidence and severity index was done with the SPSS and excel.

RESULTS AND DISCUSSIONS

Investigations were carried out in JDNP for detection of forest disease and results obtained in this study are presented below.

4.1 Potential forest pathogens in JDNP

Conifer forests form the most important natural vegetation in most parts of the Park area at elevations above 1800m amsl. They either form pure stands or stands of mixed species occasionally with hardwoods and play important role in rural constructions as well as for conservation. This study revealed, a total of 20 forest pathogens, 15 fungi belonging to 11 families, 3 flowering mistletoes belonging to two families and two insect pests (bark beetle) belonging to two families were recorded as shown in Tables 7, 8 and 9 which have potential to cause epidemic diseases.

Diseases caused by these pathogens broadly fall under root rot, heart rot, foliar damage, parasitism and mortality. Results also show that these pathogens are having detrimental effect on conifers. It also shows that 65% of pathogens were reported from pure coniferous stand and 30% from mixed coniferous forest.

Host	Fungal pathogen	Disease	Abundance	Fungal
				Incidence (%)
Juniperus recurva (N= 521)	Heterobasidon annosum	Root rot	73	14
Picea spinulosa	Fomitopsis pinicola	Heart rot	27	04
(N=631)	Chrysomyxa woroninii	Needle blight	08	01
Abies densa	Fomitopsis pinicola	Heart rot	93	11
(N=876)	Armillarea mellea	Root rot	39	04
	Armillarea ostoyoe	Root rot	53	06
	Herterobasidion annosum	Root rot	35	04
	Ganoderma appalatum	Root rot	46	05
	Lirula nervisequia	Needle cast	15	02
Tsuga dumosa	Fomitopsis pinicola	Heart rot	154	21
(N=721)	Heterobasidion annosum	Root rot	68	09
	Almillaria ostoyae	Root rot	52	07
Pinus wallichiana	Rhizina undulate	Root rot	12	03
(N=397)	Cronartium ribicola	Stem rust	26	07
	Meloderma desmazierii	Needle cast	09	02
	Dothistroma septosporum	Needle cast	07	02
Pinus roxburghii	Phellinus pini	Heart rot	11	04

Table 7 Fungal pathogens from Jigme Dorji National Park, their incidence percentage and abundance

(N=296)	Coleosporium sp.	needle	03	01
	Taxillus versicolor	Wood decay	08	03
	Lhophoderma sp.	Needle cast	05	02
			1 (3.7	

N=Number of tree studied. Fungal incidence = Abundance /N

Table 8 Insect pests from Jigme Dorji National Park, their incidence percentage and abundance

Host	Insect pest	Symptoms	Abundance	Pest incidence (%)
Pinus roxburghii	Ips longifolia	Mortality	23	08
Pinus wallichiana	Ips schimutzenhoferi	Mortality	44	11
Picea spinulosa	Ips schimutzenhoferi	Mortality	26	04
Pest incidence = A	N= As giv	ven in table 7		

Table 9 Phanerogamic Parasites from Jigme Dorji National Park, their incidence percentage and abundance

Host	Parasitic plant	Effect	Abundance	Parasites incidence (%)
Abies densa	Taxillus kaempferii	Parasitism	72	08
Pinus wallichiana	Taxillus kaempferii	Parasitism	78	20
Pinus roxburghii	Taxillus kampferii	Parasitism	27	09
	Arceuthobium minutissimum	Parasitism	26	09
Picea spinolosa	Arceuthobium sichuanense	Parasitism	56	09
Paras	site incidence =Abundance/N	N= As giv	en in table 7	

4.2 Biodiversity index of forest pathogens

Table 10 Pathogen diversity index JDNP host species

	Diversity index						
Host	Shannon index (H')	Sipmson's index (D)	Pielou index (e)				
Juniperus recura	0	0	0				
Picea spinulosa	1.205	0.67	0.871				
Abies densa	1.832	0.83	0.941				
Pinus roxburghii	1.720	0.81	0.884				
Pinus wallichiana	1.453	0.72	0.811				
Tsuga dumosa	0.985	0.59	0.896				

Pathogen diversity was recorded highest in *Abies densa* (H'=1.832) followed by *Pinus roxburghii* and *Pinus wallichina* with H' 1.720 and H' 1.453, respectively. This proves that

Abies densa has more richness and evenness in terms of the forest pathogens diversity as compared to other host tree species. The least pathogens evenness and richness diversity was shown by *Juniperus recurva* (H'=0). Simpson's diversity index (D) also showed similar results, where highest value was found for *Abies densa* and *Pinus roxburghii* 0.82 and 0.81, respectively. However, according to Shannon diversity index score, *Juniperus recurva* and *Tsuga dumosa* were having very low pathogen diversity (0.0001-0.9999). *Picea spinulosa, Pinus wallichiana* and *Pinus roxburghii* were having low pathogen diversity (1.0000-1.7499). Only *Abies densa* was having medium pathogen diversity (1.7500-2.2999). Pathogens in each host were evenly distributed (0.7500-1.000) except in *Juniperus recurva* (0).

4.3 Disease incidence and severity index

Considering all the listed pathogens, the disease incidence was highest in *Pinus wallichiana* (44%) followed by *Abies densa* (40%), *Tsuga demusa* (38%), *Pinus roxburghii* (19%), *Picea spinulosa* (18%) and least in *Juniperus indica* (14%). Similarly the disease severity index was found maximum in *Pinus wallichiana*, *Abies densa*, *Tsuga dumosa*, *Pinus roxburghii*, *Picea spinulosa* and *Jumpierus indica* (58%, 53%, 49%, 46%, 25% and 18%, respectively) as showed by figure 3. Pathogens incidence rate was more in parasitic plants (n=259), followed by insect pests (n=93) and fungi (n=744). Descriptive analysis shows mean value of percent disease incidence as 28.8 (SD= 13.21) and mean disease severity index percentage as 41.5 (SD=16.5).

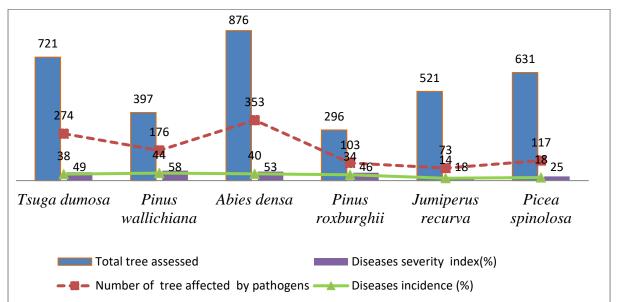


Figure 3 Diseases incidence and severity index percentage

It was also found that from total diseased trees (N=1096), 74% (n=807) fall in low, 19% (n=211) medium and 7% (n=74) in high categories of disease severity index. Study further concluded that root rot, heart rot and parasite disease lead with 34.4%, 29.9%, 23.6% respectively and insect and foliar disease least with 8.4% and 4.2% in JDNP. Further, Pearson correlation between disease incidence and severity index show as a significant relationship (r=0.998, p=0.05)

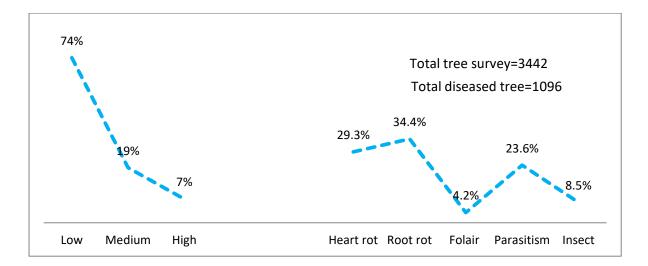


Figure 4 Disease severity and type percentage

4.4 Disease rate in JDNP ranges

Study site analysis showed that Linzhi range has more disease (28%), followed by Soe range (22%) and Laya range (19%). Least disease was noticed in Gasa and Ramina range with 16% and 15%, respectively as shown in Table 11.

			Disease %			
JDNP Range	Heart rot	Root rot	Foliar	Parasite	Insect	_
Ramina	52	37	8	39	27	15
Gasa	105	57	2	11	6	16
Laya	92	72	2	33	9	19
Soe	52	82	12	58	32	22
Lingzhi	18	130	23	118	19	28
Total	319	378	47	359	93	1096/100%

Table 11 Disease rate in JDNP ranges

Similarly, chi square test ($\chi 2=58.18$, p=0.05, df=4) also showed significant abundance variation in JDNP range thereby rejecting null hypothesis of having equal pathogen abundance in each JDNP range.

Range	Observe value (O)	Expected value (E)	Deviation (O-E)	(O-E)/E	χ2
Ramina	163	219.2	-56.2	3158	14.4
Gasa	181	219.2	-38.2	1459	06.6
Laya	209	219.2	-10.2	104	0.47
Soe	236	219.2	16.3	265	1.21
Lingzhi	308	219.2	88.3	7796	35.5
Total	1096	1096	00.0	12782	58.18

Table 12 Chi- square test for pathogen abundance variation in JDNP ranges

P=0.05, df =4, χ^2 tabulated=9.49

4.5 Host to pathogen ratio

Hosts to pathogens ration was worked out on the basis of number of fungi, mistletoes and the insect pests identified from each host. It was confirmed that host to pathogen was lowest in *Juniperus indica* with 1:1 and highest in *Abies densa* and *Pinus roxburghii* with 1:7 each. Other hosts like *Picea spinulosa, Tusuga dumosa* and *Pinus wallichina* were having host to pathogen ratio of 1:4, 1:3 and 1:6, respectively. It showed that average of host to pathogen ratio is 1:4.

4.6 Pathogens similarity in host

A Bray-Curtis dendrogram based on abundance of individual pathogen in each host (Figure 5) showed that the host preferences by pathogens were less similar (19.16%). *Abies densa* and *Tsuga dumosa* have the most similar (53.26%) pathogens followed by *Juniperus recurva* and *Tsuga dumosa* (39.19%). *Juniper recurva*, *Pinus spinulosa* and *Pinus roxburghii* have no similar pathogens (Table 12). *Pinus roxburghii* cluster apart from other hosts suggested that the pathogens occurrences are most distinctive.

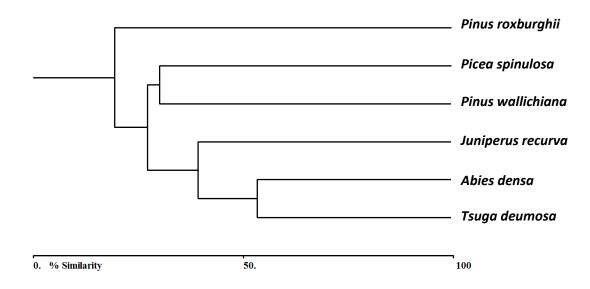


Figure 5 Bray-Curtis linked cluster dendrogram for the hosts, calculated using total number of pathogens per host

Host species	Tsuga	Pinus	Abies	Pinus	Juniperus	Picea
	Dumosa	Wallichiana	densa	roxburghii	Recurva	spinulosa
Tsuga Dumosa	*	0.00	53.26	0.00	39.19	13.81
Pinus Wallichiana	*	*	27.22	19.35	0.00	30.03
Abies densa	*	*	*	11.84	16.43	11.48
Pinus roxburghii	*	*	*	*	0.00	0.00
Juniperus recurva	*	*	*	*	*	0.00
Picea spinulosa	*	*	*	*	*	*

Table 13 Pathogens percentage similarity matrix

4.7 Analysis of parameters

4.7.1 Altitude

Lowest altitude of diseases occurrence was in Ramina range (1629m asl) and highest was in Lingzhi range (3870 asl). 30% of diseases occurrences were in altitude between 1000m asl to 3000 m asl were *Pinus roxburghii* and *Pinus wallichina* formed dominants vegetation. 70% between 3000m asl to 4000m were *Abies densa, Tsuga dumosa, Picea spinulosa* form pure strand or mixed vegetation. In lower range, most of the pathogens were mistletoes and the beetles (*Ips*) and few fungi but in higher altitude most of the diseases were related to fungi. It's concluded that with increases in evaluation abundance of pathogens also increase (r=0.88).

4.7.2 Aspect

The disease is most prevalent on north-facing slopes, while south facing slopes are normally unaffected. Trees on north-facing slopes produce poor height growth and those showing the poorest growth eventually succumb to the diseases. A characteristic feature of the diseased slopes is the absence of sunlight in winter. Dieback is most prevalent on north-facing slopes and normally affected young trees as they were about to form canopy. About 58% of diseases due to fungi were seen in northern aspect with only 18% prevailing in west, 15% east and 9% in south but for the mistletoes they were prevailing with 45%, 29%, 14%, and 12% for east, south, west and north, respectively. Similarly *Ips* attack was prevalent with 50%, 35%, 10% and 5%, for south, east, and west and north respectively.

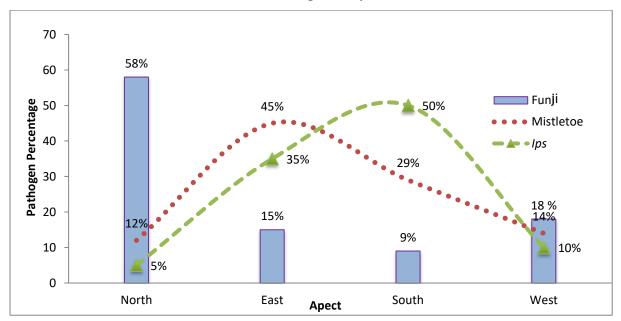


Figure 6 Pathogen or insect pest percentages with respect to aspect

4.7.3 Composition (mixed and pure forest)

In lower altitude (1000-2000m amsl) 80% of sampling unit were pure stand of *Pinus roxburghii* and *Pinus wallichiana* however, mixed forest intercepted by broad leaves and other conifers was also seen (20%) in few sampling units. At higher altitude between 300 to 4000 m amsl both pure and mixed conifers interception by *Rhodendron, Acer campelli, Larix griffithii* and different species of bamboo with 60% and 40% of sampling units were found respectively. Chi square test (χ 2=0.14, p=0.05, df=1) proved about 65% of diseases occurred in pure forest and 35% in mixed forest.

	Pure forest	Mixed forest	Total
Disease observed value (O)	718	378	1096
Disease expected Value (E)	712 (65%)	384 (35%)	1096
Deviation= (O-E)	06	-06	00
(O-E)2	36	36	72
(O-E)/E	0.05	0.09	χ2 =0.14

Table 14 chi-square test for significant difference in proportion of pathogens in pure and mixed forest

P=0.05, df=1, Tabulated value=3.85

4.7.4 Predisposing factors

For each species there were different dominant predisposing factors (Figure 7) such as fire, human impact (pruning, injuries, logging, poor silviculture system, etc.), soil (pH, moisture, etc.), snow/frost and others. Percentage of predisposing factors were, 37%, 24%, 12%, 8% and 19% of fire, human impact, soil (pH, moisture, drought), frost / snow and others, respectively.

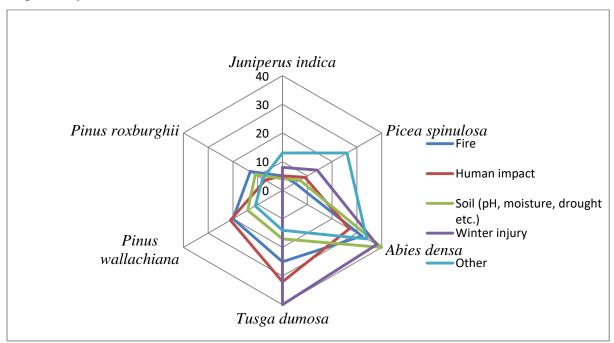


Figure 7 Predisposing factors of forest disease (%)

4.7.5 Girth class (GBH) relation with pathogens

Conifers were found susceptible to diseases from young age to maturity. Descriptive analysis in each GBH class showed that the occurrence of diseases was highest in 160-180 cm girth class (mean=56.8, SD=58.5) followed by girth class 140-160 cm (mean 40.4, SD=36.6). Least disease was appeared in girth class 20-40 cm (mean=4.6, SD=5) (Table 15 and Fig 8).

GBH class	Pathogen abundance						Descriptiv	e analysis
cm	Heart	Root	Foliar	Parasite	Insects	Total	Mean	SD
010-020	0	3	33	0	0	36	7.2	14.5
020-040	2	9	11	1	0	23	4.6	5.0
040-060	12	11	0	59	3	85	17	24.0
060-080	5	7	1	29	7	49	9.8	11.0
080-100	17	15	0	70	4	106	21.2	28.2
100-120	43	44	0	43	11	141	28.2	21.1
120-140	57	72	0	11	21	161	32.2	30.9
140-160	72	86	2	27	15	202	40.4	36.6
160-180	111	131	0	19	32	293	56.8	58.5

Table 15 Descriptive analysis of pathogens in each GBH class

Regression analysis also generated statistical relationship between the GBH class (predictor variables) and the pathogens abundance (response variable) with $R^2 = 0.88$ and multiple R=0.94 (p value=<0.05). Regression further concluded that predictor variable was associated with changes in the response variable.

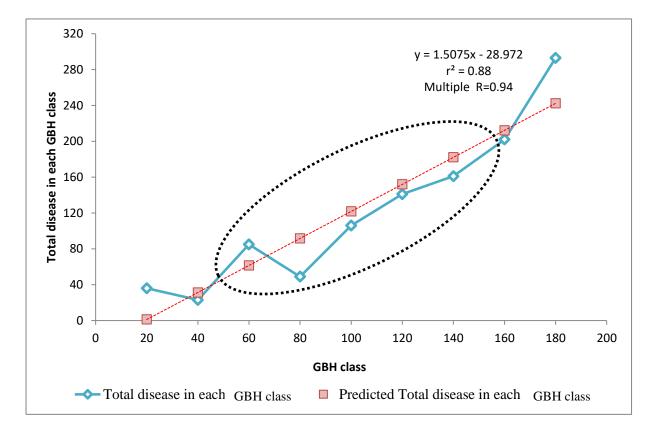


Figure 8 GBH class line fit plot

CONCLUSION

In Bhutan, forest resource is vast and will provide wood and ecological functions for a multitude of purposes virtually indefinitely, if managed wisely and used sustainably. Though, native insect pests and diseases are an integral part of forest ecosystems that kills the weakened and senescent trees to make way for new, vigorous forests they also help to recycle forests by decomposing trees to replenish the soil and supply vital nutrients necessary for forest growth. Process of forest regeneration, growth and renewal has been repeated for millennia and is essential to stable, healthy forest ecosystems (Farjon and Page, 1999).

However, human need for lumber and other wood products often conflicts with the natural loss of these products through diseases. Disease outbreaks also affect other resources valued by society such as aesthetics, recreation, water and wildlife. If conservation and productivity are to be sustained, forests have to be protected against fire, indiscriminate cutting, encroachments and equally important against insect pests and diseases. Whilst the protection of forests against the human hazards are partly be achieved through law enforcement and extension services. But, protection against diseases requires, in addition a much more integrated approach incorporating specialized knowledge on types and nature of diseases. Utilization of such knowledge is not being achieved due to insufficient knowledge about forest pathology in Bhutan at present. As reported in the Second National Communication (2011), Bhutan is highly vulnerable to adverse impacts of climate change due to the fragile mountainous ecosystem and economic structure. The most vulnerable sectors are water resources, agriculture, forests, biodiversity, and hydropower sectors.

Therefore, a comprehensive inventory of diseases in the JDNP was undertaken and 20 species of pathogens affecting different species were recorded which are known to cause large forests damage worldwide. Therefore, to fulfil the Constitution mandates, GHN principles, International Conventions, Pledges and domestic Policy and law, following measures are need to be considered:

Bhutan has large forest cover and fall under higher climate change risk zone. 69% of rural population also depend on forest and it is key for economic, ecological and biodiversity. Yet, Bhutan lack forest pathologist and entomologist who play vital role for forest protection and management. Scientific knowledge on forest pathology and resource persons is lacking which create huge gab in forest pathology. Therefore, it's imperative to enrich and create human capacity in forest pathology science with respect to climate change in Bhutan.

Forest protection, conservation and management activities are concentrated only to wildfire, social restriction system, Buddhist principles and Gross National Happiness (GNH) vision. Diversification of forest management to forest diseases and pests inventory, incorporation of forest pathology and entomology discipline are paramount importance for 72% forest for current and future ecological and protective equations.

Finding the reference about forest diseases and research are challenging in this Himalayan County. It receives a little concerned despite destroying a large area of forest since first outbreak from 1980s. Low budget allocated in forest department (eg.4.1 billion in 2013-2014) also hampered the research work in forestry. Therefore, incorporation of pathological science and traditional knowledge in forest protection, conservation and management programmes with proper budget allocation for pathology research are necessary.

Dorji (2010), reported about 247 species of exotic plants in Bhutan, which accounts for about 5.6% of the total recorded plant species in the country; hence it is likely that forest diseases are also introduced in country. Increasing in the international trade, might also introduce forest pathogens as most of virulent pathogens are reported from neighbouring countries such as Nepal and India. This called necessary measurements and programmes in plant quarantine sectors.

The high levels of incidence and infection severity caused by mistletoes suggests past and present forest management practice. This is because it is common practice to preferentially cut uninfected trees with good wood quality and to leave infested residual trees. Incorporating principles of disease management, particularly pruning and sanitation in a silviculture system will reduce the mistletoes infection. High heart rot incidence also suggests effect of past primary focus on the protection of the forests. Therefore, now it called for balance harvests of mature stand following conservation with sustainable management which is economical and scientific sound.

Hence, this study fulfilled the objectives to document the diversity of forest diseases and provide information about disease incidence and severity index along with key measures and recommendations. Therefore, this study will also act as base line information for forest pathology and will be valuable data for future references in JDNP, Bhutan.

- Agrios, G. (2006). *Plant Pathology*. New Delhi: Elsevier, Division of Reed Elsevier Indian Private Limited.
- Bakshi, B. K. (1971). *Indian Polyporaceae (On trees and Timber)*. New Delhi: Indain Council of Forest Reserch and Education.
- Bakshi, B. K. (1976). *Forest Pathology; Principal and practic in Foresty*. Dehardun: Controller of Publication.
- Chhetri, P. B. and Tenzin, K. (2012). *State of Forest Genetic Resources of Bhutan. Report.* Department of Forests and Park Services, Royal Government of Bhutan.
- Cooke, B. M. and Jones, D. G. (2006). *The Epidemology of Plant Diseases*. New York: Springer publication.
- DoFS. (2011). Forestry development in Bhutan. Policies, Programmes and institutions:

Celebrating international year of forest. MoAF, Thimphu, Bhutan.

- Donald, P.A., Stamps, W, T. and Linit, M. J. (2003). Pine wilt disease. *The Plant Health Instructor*. DOI:10.1094/ PHI-I-2003-0130-01.
- Donaubauer, E. (1986). Technical advisory services for forest development, Bhutan, Forest Pathology. Department of Forests, *Field Document*, *11*:37.
- Donaubauer, E. (1987). Technical advisory services for forest development, Bhutan, Forest Pathology. Department of Forests, *Field Document*, 12:14.
- Donaubauer, E. (1993). On the decline of fir (*Abies densa* Griff.) in Bhutan. *Field Document*, 12:14.
- Dorji, S. (2007). Himalayan dwarf mistletoe (*Arceuthobium minutissimum*) and the leafy mistletoe *Taxillus kaempferi* on Blue pine: A case study in Western Bhutan. *Diploma thesis*, 127.
- Dorji, T. (2016). Hydropoer Sale. Kuensel:5
- Dorji, Y. (2010). A red data list for the flowering plants of Bhutan. WWF, Bhutan.
- FAO. (1960). An international review of forestry and forest products. Unasylva, Vol. 14(4).
- FAO. (1965). An international review of forestry and forest products. Unasylva, 19(3).
- FAO. (2010). Global Forest Resources Assestment. Foresty Paper :169.
- Farjon, A. and Page, C. N. (1999). Conifers. Status Survey and Conservation Action Plan. IUCN/SSC Conifer Specialist Group. IUCN, Gland, Switzerland and Cambridge,UK.:121
- Forestry, N. (2010). Common Diseases of Selected Forest Trees.

- Heiniger, U. (2003). Das Risiko eingeschleppter Krankheiten für die Waldbäume. 10: 410-414.
- Hepting, G. (1963). Climate and forest diseases. Annual Review of Phytopathology 1, 31-50.
- Hosagoudar, V. B., Sabeena, A. and Mathew, S. P. (2013). Additions to asterinaceous fungi (Ascomycetes) in India. *Journal of Threatened Taxa* 5(2): 36703672 doi:10.11609/JoTT.o3228.3670-72.
- IPCC. (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 1–18.
- Kirisitis, T., Dorji, S., Gyenthen, S. and Chhetri, D. B. (2007). Common Shoot, Stems, leaves and Branch Diseases of Conifer in Bhutan. *Acta, Silva, Ling, Hung.*, 241-247.
- Konrad, H. (2006). Molecular ecology of forest pathogens causing Dutch elm disease, bluestain and Sirococcus shoot blight. University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Austria. Dissertation. 57.
- Porta, N. L., Capretti, P., Thomsen, I. M., Kasanen, R., Hietala, A. M. and Weissenberg, K. V. (2008). Forest pathogens with higher damage potential due to climate change in Europe. *Plant Pathol.*, 30, 177-195.
- Ravarden, L. and Johansen, I. (1980). A primary polypore flora of East Africa. Oslo, Norway.
- Sturrocka, R. N., Frankel, S. J., Brown, A. V., Hennond, P. E., Kliejunasb, J. T. and Lewis, K. J. (2011). Climate change and forest diseases. *Plant Pathology*, 60, 133-149.
- Tharchen, L. (2013). *Protected Area and Biodiversity of Bhutan*. Kolkota, India: CDB Printer Pvt.Ltd.
- Thinley, P., Tharchen, L. and Dorji, R. (2015). Conseravtion Management Plan of Jigme Dorji National Park for period january 2015-2019. *Biodiversity in Persuit of Gross National Happiness*.
- Tshering, G. and Chhetri, D. B. (2000): Important forest insect pests and diseases of Bhutan withcontrol measures. Renewable Natural Resources Research Centre, Yusipang, Bhutan, Field Guide, 57.
- Wangdi, S., Dorji, T., Wangchuck, S. and Thinley, K. (2014). Social Restriction in Traditioal Forest Managent System and its impication in Biodiversity Conservation in Bhutan. 112-122.

		ANN	EXURE 1-	Questionnai	re on types	s of diseases	and their out	break (if) for	purposive sa	ampling		
					Outbreak period (If outbreak was reported in your area)							
	Disease	Tree affected	Pathogen	Units (Ha/year or	1980- 1990	1991-2000	2001-2010	1996-2000	2001-2005	2006-2010	2011-2015	2016-
Si No	Name	Name	Name	m3 or No of trees)								
1												
2												
3												
4												
5												<u> </u>
6												
7												
8												
9												<u></u>
10												
11 12												+
12												
13												+
15												
15					(Specify in	n brackets if the	e figure is O=C		mate. A =Avei	rage or U =Un	known)	
	TOTAL AREA A	FFECTED OR		L	(Speen j II							
												1
	TOTAL NUMBE	R OF TREES A	FFECTED O	R								1
	TOTAL WOOD	VOLUME AFFI	ECTED									

ANNEXURE 2 TREE DISEASES CHARACTERISATION IN FIELD

NAME OF DI	SEASES:					
DISEASES N	0:		SAMPLING UNIT NO	;		
GPS coordinate	e;	Aspect;	Altitude;	V	Vind directi	on;
1.PRIMARY	CAUSAL AGENT					
a. Scientific na	me	b. Common name		c. Host tree		
2 EXAC	T LOCATION AND TIM	IING OF DISEASE				
a District		b. Block		c. Season		
3. FOREST IN	NFORMATION (Tick one	2)				
a. Fir forest e. Broad leaved mixed with conifer forest				B. Age class DBH	s of affecte	d trees (Tick one) and
	b. Mixed conifer forest	f. Broadleaved hardwood forest		a. Seedling	a. DBH	
A. Forest	c. Blue fine forest	g. Forest scrub forest		b. Young		
types	d. Chir pine forest			c. Mature		
4. CAUSES A	ND EFFECTS OF DAMA	AGE				
A. Predisposin	g cause(s) of damage (Tick	one or two)		B. Visible ef	fects (Tick	one)
	a. Fire	f. Pollution		a. Mor	tality	
	b. Storm	g. Human impact		b. Dieb	ack	
	c. Drought	h. Others		c. Defe	oliation	
	e. Frost			d. Woo	d decay	
5. SOIL CON	DITION					
A.	Soil Ph		B. Moisture contents			
	a. Acidic	c. Alkaline	a. High	c. Low		
	a. Neutral		b. Medium.			

Annexure 3 Fruting body of fungal pathogens

Figure 2 Phellinus pini on Pinus roxburghii

Figure 3 Ganoderma appalatum

Figure 11 Heterobasidion annosum

Figure 12 Rhizina undulata

Figure 13 Armillaria solidipes (formerly Armillaria ostoyae)

Figure 14 Armillaria mellea

Annexure 4 Pure culture of pathogens

Figure 15 Armillaria solidipes (A. ostoyae)

Figure 17 Fomitopsis pinicola

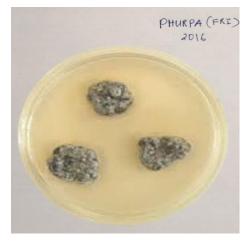


Figure 19 Dothistroma septosporum

Figure 16 Armillaria mellea

Figure 18 Heterobasidion annosum

Figure 20 Ihophoderma sp

Annexure 5 Forest pest (Ips longifolia) and damage

Figure 21 Beetles (Ips affect) on Pinus roxburghii

Figure 22 Pinus roxburghhii Mortality by Ips longifolia

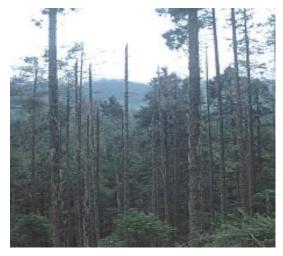


Figure 23 Picea spinulosa mortality by Ips

Figure 24 Ips Longfolia on Pinus roburghii

Figure 25 Ips schmutzhonferi on Pinus wallichiana

Figure 26 Ips Schimutzhonferii on Picea Spinulosa

Annexure 6 Fungal pathogens and damange

Figure 27 Hear rot of Abies densa

Figure 28 Hear rot of Juniperus recurva

Figure 28 Root and But rot of Tusga dumosa

Figure 30 White rot of Abies densa

Figure 31 White rot of Tsuga dumosa

Figure 32 Heart rot of Picea spinulosa

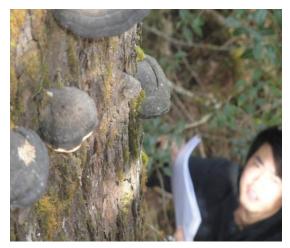


Figure 33 Assessing of fruiting body

Figure 34 Fomitops pinicola on Abies densa

Figure 35 Human impacts on Juniperus recurva

Figure 36 Pathogens inoculation

Figure 37 Identification process

Annexure 7 Flowering Mistletoes

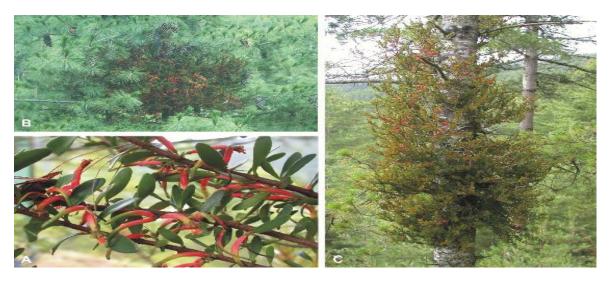
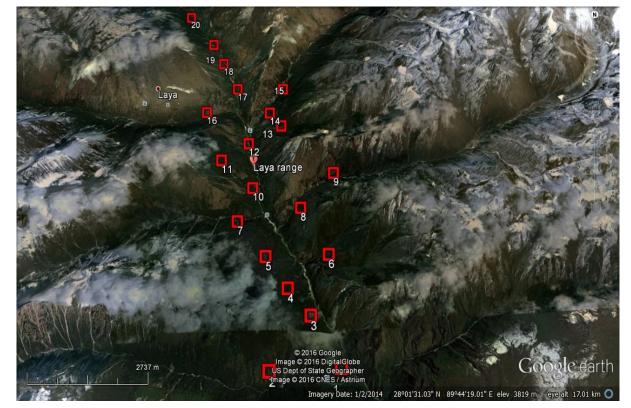


Figure 38 Leafy mistletoe T. kaempferi on P. wallichiana (Kirisitis)

Figure 39 A. minutissimum on P. wallichiana: (A) Stem swelling as symptom of dwarf mistletoe infection and shoots of A. minutissimum, (B) Pistillate (Female) plants of A. minutissimum, (C) Female A. minutissimum at plants (Kirisitis)

Figure 40 A. sichuanense



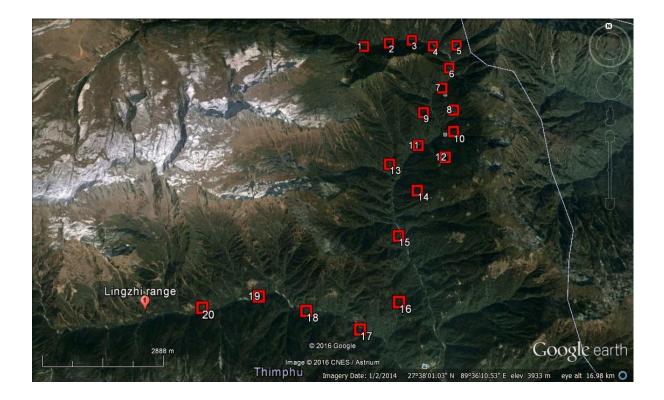


Figure 41 Fire as predisposing factor

Annexure 8 Sampling units in JDNP ranges

Annexure 9 Disease abundance in each sampling unit

									S	ampl	ing u	inits								
Range	01	02	03	04	05	06	07	08	09	10	11	12	14	15	16	17	18	19	20	Total
Ramina	12	9	17	07	11	08	10	08	13	08	05	12	09	03	09	08	05	07	02	163
Gasa	07	12	02	09	12	03	22	23	02	12	10	09	09	12	09	09	08	09	02	181
Laya	08	11	01	02	05	15	12	09	12	08	09	11	12	09	05	21	23	23	12	208
Soe	12	23	07	12	10	13	07	12	05	12	02	11	06	12	12	34	12	12	22	236
Lingzhi	12	23	10	23	22	12	23	11	13	15	12	08	22	12	32	12	23	08	15	308
Total dis	ease	tree																		1096

Annexure 10 Pathogen Diversity calculation

1. Picea spinulosa

Species	Abundance	pi=n/N	pi2	ln p _i	p _i (ln p _i)
Fomitopsis pinicula	27	0.230	0.052	-1.469	-0.337
Chrysomyxa woroninii	8	0.068	0.004	-2.688	-0.182
Ips schimutzenhoferi	56	0.478	0.228	-0.738	-0.352
Arceuthobium sichuanense	26	0.222	0.049	-1.505	-0.334
	117	D	0.83	H'=	1.205

Species Evenness: (H'/ln(S)): 0.871

36

2. Abies densa

Species	Abundance	pi	pi2	ln p _i	p _i (ln p _i)
Formitopsis pinicula	93	0.263	0.069	-1.334	-0.351
Armillarea mella	39	0.110	0.012	-2.203	-0.243
Armillarea ostoyoe	53	0.150	0.022	-1.896	-0.285
Heterisodion annosum	35	0.099	0.009	-2.311	-0.229
ganoderma appalatum	46	0.130	0.016	-2.038	-0.266
Lirula nervisequia	15	0.042	0.001	-3.158	-0.134
Taxillus kaemferii	72	0.204	0.041	-1.590	-0.324
		D=	0.83	H'=	1.832

Species Evenness: (H'/ln(S)):0.941

3. Pinus roxburghii

Species	Abundance	рі	pi2	ln p _i	pi (ln pi)
Phellinus pini	11	0.118	0.013	-2.135	-0.252
Coleosporium sp	3	0.032	0.001	-3.434	-0.111
Taxillus versicolor	8	0.086	0.007	-2.453	-0.211
Lhophoderma sp	5	0.054	0.002	-2.923	-0.157
Ips longifolia	23	0.247	0.061	-1.397	-0.346
Taxillus kampferii	27	0.290	0.084	-0.237	-0.359
Arcethobium minitissimum	16	0.172	0.029	-1.76	-0.303
		D	0.81	H'	1.720

Species Evenness: (H'/ln(S)):0.884

4. Pinus wallichiana

Species	Abundance	рі	pi2	ln pi	pi (ln pi)
R.undulata	12	0.068	0.004	-2.686	-0.183
cronarcium ribucola	26	0.148	0.021	-1.686	-0.283
D. septosporum	7	0.04	0.001	-3.225	-0.128
m. mesmazer	9	0.051	0.002	-2.973	-0.152
Ips schimutzenhoferi	44	0.25	0.062	-1.386	-0.347
Taxillus Kampferii	78	0.443	0.196	-0.914	-0.361
		D	0.72	H'	1.453

Species Evenness: (H'/ln(S)):0.811

1. Tsuga dumosa

Species	Abundance	рі	pi2	ln p _i	pi (ln pi)
Formitopsis pinicula	154	0.562	0.315	-0.576	-0.324
Heterisodion annosum	68	0.248	0.061	-1.394	-0.346
Armillrea mella	52	0.19	0.036	-1.662	-0.315
		D	0.59	H'	0.985

Species Evenness: (H'/ln(S)):0.896

1	Total dise	ased <i>Tsuga dumo</i> s	sa =274	
N=721	Low	211	1*211	
	Medium	42	2*42	
	High	21	3*21	
		274		
		DSI=	358/721	0.496533

Annexure 11 Forest Disease severiy calculation

2	Total di	seased Pinus wallichiana =:	176	
	Low	132	1*132	
N=397	Medium	32	2*32	
	High	12	3*12	
		176		
		DSI	232/397	0.584383

3		Total diseas	sed Abies densa =353	bies densa =353			
	N=876	Low	256	1*256			
		Medium	77	2*77			
		High	20	3*20			
			353				
			DSI	470/876	0.53653		

4		Total o	diseased Pinus rox	burghii =103	
	N=296	Low	74	1*74	
		Medium	22	2*22	
		High	7	3*7	
			103		
			DSI	139/296	0.469595

5		Total	diseased Jumipe	erus indica =73	
	N=521	Low	52	1*52	
		Medium	12	2*12	
		High	6	3*6	
			70		
			DSI	94/521	0.180422

6		Total dise	olosa=117		
	N=631	Low	82	1*82	
		Medium	23	2*23	
		High	12	3*12	
			117		
			DSI	164/631	0.259905