Name of reporter: Nguyen Van Thinh

Applicant number: 18586-1

Country: Vietnam

Title of project:Diversity and sustainable use of tree species producing
valuable non-timber products after shifting cultivation in
Ben En National Park, Vietnam

Table of contens

1.	Introduction	4
2.	Objectives	5
2.1.	General objectives	5
2.2.	Specific outcomes	5
3.	Sampling procedures	6
4.	Data collection	7
4.1.	Adult trees	7
4.2.	Regeneration	7
4.3.	Identifying trees producing NTFPs and their purpose of use and parts used	8
5.	Data analysis	8
6.	General description of Ben En National Park	12
6.1	History, location and natural areas	12
6.2	Population	13
6.3	Climate	14
7	Main results of adult tree species	15
7.1	Species richness and the tree abundance of all tree species	15
7.2	The diameter distribution and basal area of all tree species	16
7.2 7.3	The diameter distribution and basal area of all tree species	
		19
7.3	Tree composition of species and family of all tree species	19 22
7.3 7.4	Tree composition of species and family of all tree species	19 22 24
7.3 7.4 7.5	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species	19 22 24 25
7.3 7.4 7.5 7.6	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species Diversity of tree species producing NTFPs classified by parts used	19 22 24 25 d 28
7.3 7.4 7.5 7.6 7.7.	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species Diversity of tree species producing NTFPs classified by parts used Population density of tree species producing NTFPs classified by parts use	19 22 24 25 d 28 30
 7.3 7.4 7.5 7.6 7.7. 7.8 	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species Diversity of tree species producing NTFPs classified by parts used Population density of tree species producing NTFPs classified by parts use Diversity of tree species classified by different uses	19 22 24 25 d 28 30 35
 7.3 7.4 7.5 7.6 7.7. 7.8 7.9 	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species Diversity of tree species producing NTFPs classified by parts used Population density of tree species producing NTFPs classified by parts use Diversity of tree species classified by different uses Diversity of tree species producing NTFPs preffered by local people	19 22 24 25 d 28 30 35 39
 7.3 7.4 7.5 7.6 7.7. 7.8 7.9 7.10 	Tree composition of species and family of all tree species Tree composition of family of all tree species Diversity patterns of all tree species Diversity of tree species producing NTFPs classified by parts used Population density of tree species producing NTFPs classified by parts use Diversity of tree species classified by different uses Diversity of tree species producing NTFPs preffered by local people Population structure of tree species producing NTFPs	19 22 24 25 d28 30 35 39 39

N.	FFP spec	cies	49
11		Management implications for conservation and more sustainable use of	
-		it-sharing mechanisms	48
10		Recommendations for improving effective forest management of NTFPs	
9		Constraints for biodiversity conservation and use of NTFP resource	47
	8.5	Regeneration of tree species producing NTFPs	46
	8.4	Family composition of regeneration (seedlings and saplings)	44
	8.3	Species composition of seedlings and saplings	42

1. Introduction

Non-timber forest products (NTFPs) play a crucial role in the livelihoods of forest dependent communities (local communities in and around forests) since timber trees produce economically valuable nontimber products and these products may be used for subsistence purposes or for sale and thus providing cash income (Ros-Tonen and Wiersum 2005). Many of the timber trees in the tropical rainforests produce a variety of highly valuable non-timber products like edible and medicinal fruits, seeds, nuts and oils. Also, a considerable number of trees produce industrial materials like latex, tannin, gum exudates, dyes and resin (Olajide, Udo et al. 2008) . The utilization of non-timber forest products for food, health care, cultural practices and income generation have become a major way of life of most forest dwellers. Ford Foundation in 1998 opined that non-timber forest products are a particularly important part of multiple-use strategies because they increase the range of income generating options of forest-dependent communities, while avoiding some of the ecological costs of timber cutting (Olajide, Udo et al. 2008)

Ben En National Park was established for the protection of fauna in 1979 and as a nature reserve in 1986. Around 26% of the total forestland in the buffer zone is managed by local people. This land consists of 2,600 ha (8.4%) of secondary forest and poor forest lands, about 2,300 ha of bare land (with some small trees and shrubs), 443 ha of plantation forest and approximately 2,500 ha (about 8%) of agricultural land (Anonymous 2011). In order to prevent the destruction of the forest areas and ensure the conservation of its rich biodiversity, the park prohibits the harvesting of non-timber forest products according to a special forest management regulation. However, in order to incorporate NTFP exploitation and production into sustainable and multiple-use forest management schemes, a broadly oriented NTFP study should be carried out and adequate quantitative and qualitative ecological data on tree species in relation to a NTFP identification and utilisation survey, an ecological inventory of NTFP plant resources, species composition, abundance of each species, stem diameter distribution and abundance of regeneration of each species must be collected in the park. This study therefore assessed the diversity and population density of timber tree species producing valuable non-timber products with the aim of providing the required ecological data for fashioning out realistic and effective conservation strategies as well as the management of biodiversity.

2. Objectives

2.1. General objectives

- The diversity and population density of all tree species assesses in undisturbed forest and three sites which are forest stands of 0-26 -year-old fallows. A good knowledge on floristic composition and forest structure is important in order to conceive them for a sustainable use;
- This study is undertaken to assess the diversity, richness and regeneration status of woody species along with NTFP tree species;
- 3. The project also determines the most vulnerable NTFP species to make suggestions for sustainable use and conservation of these species.

2.2. Specific outcomes

This study is clearly indicated as follows:

- List of all woody tree species and species producing non-timber forest products with a DBH ≥ 5 cm recorded in three successional forests and in untouched forests;
- 2. List of regeneration with a DBH < 5 cm;
- Data sets including tree density, basal areas, forest structure and floristic composition (species and family) of all woody tree species and species offerring NTFPs in three successional forests and in untouched forests;
- Diversity indices including Shannon-Wiener, Simpson's diversity, and similarity index (Evenness index) of all woody tree species and species producing NTFPs in three successional forests and in untouched forests;
- 5. Details of parts extracted and uses of NTFP species, life form/habit, harvesting methods and management, economic values, species used for medicinal purposes;
- 6. Current constraints for biodiversity conservation and use of NTFP resources;
- 7. Recommendations for improving effective forest management of NTFPs and benefitsharing mechanisms;
- 8. Management implications for conservation and more sustainable use of NTFP species.

3. Sampling procedures

In this study, the chronosequence approach or space-for-time substitution widely used in studies of succession in forests after abandoned pasture and after slash and burn agriculture was applied in order to study changes in tree abundance, species richness, species and family composition. Identifying the ages of agricultural fallows and the history of the secondary forest sites was determined by interviewing long-term residents of the study areas and several technical key officers of Ben En National Park who had knowledge of local land use; the interviewing process also took into account personal life-events and significant historic events such as periods of political upheaval.

One transect was constructed at each successional forest phase depending on the time elapsed since the slash and burn agriculture occurred: an early secondary forest with a recovery age of 14-15 years since abandonment (from 1997 to 1998); an intermediate phase, 19-20 years after fallow (from 1991 to 1992); a late one after 25-26 years (from 1986 to 1987); and undisturbed forest stands. At each transect, a point was randomly selected to be used as center of the each sample plot; 20 circular sample plots with an area of 500 m² (radius R = 12.6 m) were arranged in a systematic design along transects, intervals between adjacent sampling plots were 50 m in length. A smaller circular subplot of 100 m² was set at the center of a 500 m² circular plot (Fig. 1) leading to 20 subplot of 100 m².

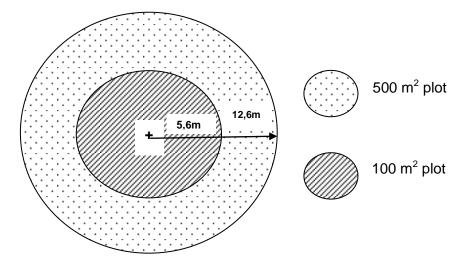


Fig. 1 The layout of the two circular sample plots; the large circle has an area of 500 m² (12.56 m radius from the center point), while the smaller circular subplot, set within the 500 m² plot, is 100 m² (5.64 m radius from the center point).

Fig. 2: Sampling design in successional site

Fig. 3: Tree measurement in sample plot

4. Data collection

4.1. Adult trees

All tree species with a DBH \geq 5 cm were recorded and measured in the 500 m² circular plots. All trees within the plots, regardless of size, had their botanical name recorded, and, where possible, their local names. For multi-stemmed individuals, each stem with a DBH \geq 5 cm was considered an individual. The DBH was measured using a "meter tape", the total tree height was taken as the distance from the base of the tree to the top of the crown using a Blume-Leiss.

4.2. Regeneration

The various parameters for regenerated tree species, including total tree height, tree name, and original regeneration, were recorded in smaller 100 m² circular sample plots with radius of 5.6 m. The tree height and DBH were utilized to identify the classification of regeneration. Types of regeneration consisting of seedlings and saplings were modified based on previous studies of regeneration in natural forests, where all seedlings with a tree height \leq 130 cm; saplings with a tree height > 130 cm and a DBH < 5 cm were recorded. Various parameters including total tree height, tree name, tree quality, and original regeneration were recorded. The diameter of the saplings was measured at ground-level; the height pole meter was used to measure the height of regeneration trees.

4.3. Identifying trees producing NTFPs and their purpose of use and parts used

The list of 164 woody tree species recorded during the field trips was prepared in sheets. At the community meeting, different groups which are indigenous experts, village elders, women and other local people were asked in order to determine medicinal plants, trees producing non-timber forest products and their purpose of use and parts used. Park rangers of the Ben En Nation Park were invited to participate in the field survey and during the meetings at village. The use of a well-structured questionnaire and oral interview was adopted to obtain relevant data. The set questionnaires consisting of the local names of the tree species offering NTFPs, the plant parts used, different uses and tree species producing NTFPs preffered by local people were administered to the respondents. A total of 16 copies of the questionnaire were allocated to 16 participants (a copy for each) in the meeting.

5. Data analysis

Tree density per ha was calculated with the count of all tree individuals from 25 sample plots; relative tree density was obtained via Formula (1).

$$RD = \frac{n_i}{N} \times 100$$
 (1)

where,

RD = Relative density,
 n_i = Number of individuals of species i and
 N = Total number of individuals in the entire population.

The basal area of the trees was calculated by Formula (2). The total basal area of one ha was calculated by the sum of the BA of all trees in the 25 subplots.

$$BA = \frac{\pi}{4} \times D^{2}$$
where,
$$BA = Basal area (m^{2}),$$
(2)

 π = Constant (3.14), and

D = Diameter at breast height (cm).

The importance value index of species and families is one criterion in the measure of a forest structure. The Importance value index of each species and family was determined by the arithmetic sum of relative abundance, dominance, and the frequency of each species or family *i* as follows:

$$IVI_{i} = Ar_{i} + Dr_{i} + Fr_{i}$$
(3)

where,

$$Ar_i = Relative abundance,$$

 $Dr_i = Relative dominance, and$
 $Fr_i = Relative frequency.$

The absolute abundance of each species was defined as the number of individuals per unit area. The relative abundance of each species corresponds to the percentage of species in relation to the total number of trees sampled($\sum_{i=1}^{s} Aa_i$). The result is thus:

$$Ar_{i} = \frac{Aa_{i}}{(\sum_{i=1}^{s} Aa_{i})} \times 100$$
where,
$$Ar_{i} = Relative abundance, and$$
(4)

 $Aa_i = Absolute abundance of species ith.$

The absolute dominance of one species was calculated as the sum of transversal area (g_i) of trees of the species, expressed as m² ha⁻¹.

$$Da_i = \sum_{i=1}^{s} g_i$$
(5)

where,

 Da_i = Absolute dominance of species ith

g_i = Basal area of species ith

The absolute frequency was defined as the ratio of the number of sample units where the species occurred to the total number of units established:

$$Fa_{i} = \frac{\text{Number of sample units}}{\text{Total number of units established}} \times 100$$
(6)

where, $Fa_i = Relative dominance of species ith$

The species diversity indices were calculated to determine tree species diversity in the oneha plot. The species richness was taken as a count of the number of species occurring in all plots of each forest type. The Margalef index of species richness was calculated based on Formula (7).

$$SR = \frac{S - 1}{Ln (N)}$$
where,

$$SR = Margalef index of species richness,$$

$$S = Number of species, and$$
(7)

= Total number of individuals.

Ν

The Shannon-Wiener index, the most commonly used index in ecological studies combines both richness and abundance while also accounting for the order or abundance of a species within a sample plot. As such, it is often used for identifying areas of high natural biological diversity.

$$H' = -\sum_{i=1}^{k} \left[\left(\frac{n_i}{N} \right) \times \ln \left(\frac{n_i}{N} \right) \right]$$
 (8)
where,

n_i = the number of individuals or amount of each species (the ith species), and

N = the total number of individuals (or amount) for the site.

The maximum diversity (H_{max}) could be found if all species were of equal abundance, which implies $H' = H_{max} = ln(S)$, where S is the total number of species.

The Simpson's diversity index was obtained following Magurran (1988). The value of D ranges between 0 and 1; with this index, 0 represents infinite diversity and 1 means no diversity. In other words, the bigger the value of D, the lower the diversity.

$$D = \frac{\sum_{i=1}^{k} n_i(n_i-1)}{[N(N-1)]}$$
(9)

where,

n_i = Number of individuals of "*ith*" species,
 k = Number of species that occurring in the sample area,
 N = Total number of sampled individuals.

Similarity indices measure similarity between communities based on species composition. The Evenness index or Shannon-Weaver's equitability = Evenness or Pielou (J') (distribution of abundances among species) was determined according to Pielou (1966).

$$E=J = \frac{H'}{H_{max}} = \frac{H'}{\ln(S)}$$
where,

$$H = Shannon-Weaver diversity index,$$

$$H'_{max} = \ln(S), and$$

$$S = Total number of observed species in the community.$$
(10)

Sørensen's index of a species is a very simple measure of beta diversity that ranges from a value of 0 (where there is no species overlap between the communities) to a value of 1 (when the same species are found in both communities). The similarity index was calculated by the following formula given by Sørensen (1948):

$$SI = \frac{2c}{a+b}$$
(11) where,

а	= Number of species recorded in stand A,
b	= Number of species recorded in stand B, and
с	= Number of common species in two stands being compared.

The Jaccard's coefficient mentioned by Jaccard (1901) was calculated based on formula (12) as given by Small et al. (2004).

$$J = \frac{a}{a+b+c}$$
(12)

where,

a = The number of species shared between the plots,

b = The number of species unique to plot 1, and

c = The number of species unique to plot 2.

6. General description of Ben En National Park

6.1 History, location and natural areas

In 1979, the area that makes up present-day Ben En National Park was designated as a protected area for fauna and flora and managed by Nhu Xuan Logging Enterprise until 1986. According to the Council of Ministers' Decision No. 194/CT on August 9, 1986, it was established to protect "the wildlife, elephant and forest areas in the upper part of the Muc River". By 1990, the site achieved special-use forest status, and two years later the park was established on January 27, 1992 (Tordoff and Grindley 2000). The park (19°31' to 19°43' N - 105°25' to 105°38' E) is situated between the Nhu Thanh and Nhu Xuan Districts of Thanh Hoa Province in the North Central Coast (Anonymous 2011). The core zone covers three communes: Xuan Thai, Binh Luong, and Xuan Binh (Tordoff and Grindley 2000). It borders Hai Long and Xuan Khang Communes to the north; Xuan Quy Commune, Hoa Quy Commune, and Song Chang Enterprise to the west; Hai Van and Xuan Phuc Communes to the east; and Xuan Binh and Xuan Thai Communes to the south (Anonymous 2009).

According to the Ben En National Park Management Board, the park has a total area of approximately 16,600 ha and is divided into the following zones:

- 1. Strictly-protected zone, declared so as to maintain the ecosystems and diversity of wildlife and plant species;
- 2. Ecological restoration zone, to rehabilitate strongly disturbed ecosystems; and
- 3. Administrative and tourism zone, which consists of the main office, the Forest Protection Department office, and the Tourism Services Centre.

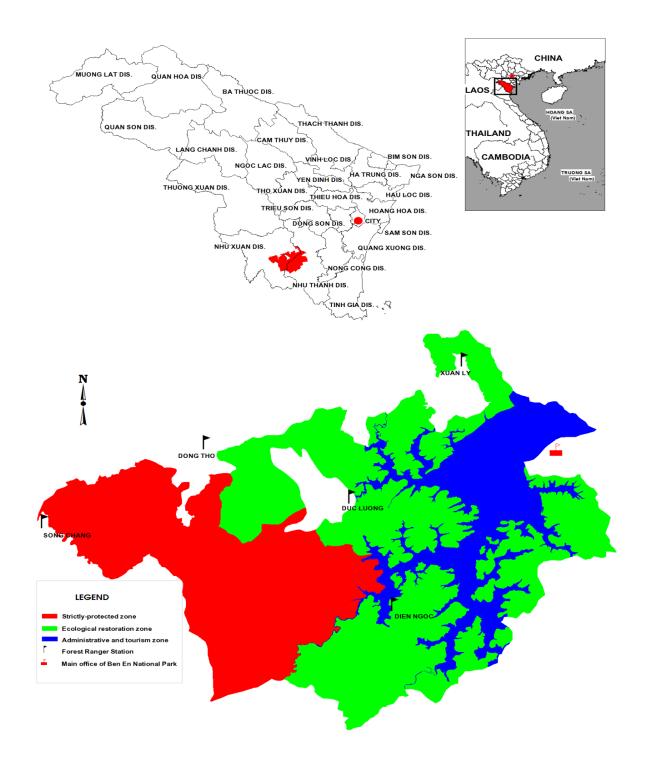


Fig. 4 The location and various zones of Ben En National Park, Vietnam.

6.2 Population

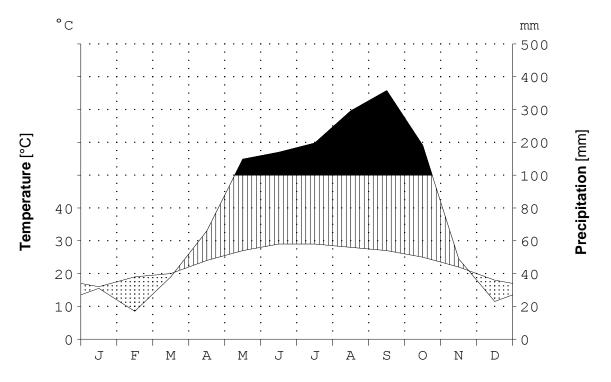
According to official statistics published by the Nhu Thanh and Nhu Xuan Districts, the total population in 2009 of both the core and buffer zones of the park was approximately 26,600 people belonging to four main ethnic groups (Kinh \approx 52%; Thai \approx 22%; Muong \approx 17% and Tho \approx 8.5%) (Anonymous 2009; Anonymous 2011). The labour force is quite abundant, but the

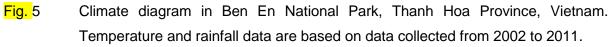
local occupational structure is not diverse, it consists of mainly seasonal agricultural occupations. The average population density in the buffer zone is approximately 230 people per km², albeit unevenly distributed: most people live along the main road (Anonymous 2011), as the majority of local people have settled near the park. As a result, local people's livelihood activities have noticeably impacted forest resources. It, therefore, is necessary to apply synchronized and coordinated measures in order to improve the socio-economic situation for local communities, teach the sustainable usage of forest resources, and raise awareness for nature conservation (Anonymous 2011).

6.3 Climate

Because it shares a sub-tropical climate with other regions in North-Central, Vietnam, the winter in Ben En National Park is warm and dry, whereas the summer is hot and wet. In Table 2.1, data recorded over a 10-year period (2002-2011) indicate that the mean temperature is highest (28 - 29°C) between June and August and lowest in January and December (16 and 18°C, respectively). The heaviest rainfall occurs between the months of July and October. Mean monthly rainfall is below 17 mm in February and reaches 358 mm in September and the mean annual rainfall is 1,600 mm.

Month	Temp	erature [°C]		Precipitation
	Average	Min	Max	[mm/month]
Jan.	16	14	18	31
Feb.	19	13	22	17
Mar.	20	17	22	38
Apr.	24	22	26	66
May	27	26	29	149
June	29	28	31	170
July	29	29	31	198
Aug.	28	27	28	296
Sep.	27	26	27	358
Oct.	25	23	26	191
Nov.	22	19	24	49
Dec.	18	17	20	23


Table 6.1 Monthly mean temperatures, and rainfall in Nhu Thanh District, Thanh Hoa Province, Vietnam. These values are means for a period of 10 years (2002 to 2011).


Database: Nhu Thanh Meteorological Station.

Total

1.586

Figure 5 shows the climate diagram of monthly averages for temperature and precipitation the course of over 10 years; capital letters along the horizontal line indicate a month. The diagram begins with January in the left-hand corner, where 20 mm of monthly precipitation (right ordinate) equal 10°C average temperature (left ordinate). When the precipitation curve undercuts the temperature curve, the area in between them is dotted, indicating a dry season. When the precipitation curve supersedes the temperature curve, vertical lines are plotted for each month, showing the wet season. There are two periods of time in the year (January, March and November-December) that receive considerably less rainfall; June and July consistently have the highest temperatures, while the lowest consistently occur in January and December.

7 Main results of adult tree species

7.1 Species richness and the tree abundance of all tree species

A total of 2607 individuals and 516 stems \geq 5 cm DBH were counted and measured in 3 hectares across three successional sites and the undisturbed forest. It was found that the longer the time period of succession, the greater the diversity among the number of individuals. The highest forest stand abundance (944 stems ha⁻¹) was recorded in the stand that had been abandoned after 25-26 years earlier; the lowest (516 stems ha⁻¹) was found in the undisturbed forest (Table 6.1).

Table 1 Tree abundance, basal area, and the number of species and families of all trees with a DBH ≥ 5 cm collected in the three phases of succession and undisturbed forest in Ben En National Park, Vietnam.

Variables	Year sin	Undisturbed		
	14-15	19-20	25-26	forest
Tree abundance [n/ha]	726	937	944	516
BA [m²/ha]	12.2	14.3	26.3	41.5
Species number [n/ha]	58	80	115	110
Family number [n/ha]	31	34	37	36

Basal area increased linearly with plot age for the secondary and old-growth forests with the highest basal area being recorded in the undisturbed forest (41.5 m² ha⁻¹) and the lowest in the early secondary forest (12.2 m² ha⁻¹). Significant differences were found in the basal area among the successional forest phases and between the old-growth forest and each phase of succession thereafter. The old-growth forests were in this way significantly greater in total basal area and lower in tree abundance than was the secondary forest.

Results indicate that the number of families in the earlier phase and the species richness thereof were consistently lower than in both other phases and the old-growth forest. The lowest number of species (58) and families (31) were revealed in the early stage; the third phase represented the highest number of species (115) and families (37). Over the course of 15 years, the number of species in the first phase did not reach 60 species, whereas 115 species were distinguished in the third stage after 26 years. The number of species in the third phase were nearly double that of the earlier stage.

7.2 The diameter distribution and basal area of all tree species

Changes observed in tree abundance and the basal area by diameter class revealed important developments in the forest structure. The diameter distribution of the three different stages of succession and the two mature stands of old-growth forest is shown in Figure 6. The majority of species showed a gradual change in forest structure and tree composition when compared with the secondary and mature forest stands, but it is clear that there was a

downward trend -indeed, a reverse-J pattern-in the amount of individuals with an increasing diameter in all sites. While the several smaller size classes in all stages and the two mature stands were the most abundant, the shift from smaller stems towards stems with larger DBH values with increasing forest types was as expected.

Differences in tree abundance were evident, particularly in the smaller diameter classes of the first, intermediate and latest stages of succession; here, a higher proportion of individuals were counted in the first three diameter classes with a respective 88.6%, 90.5%, and 75.2%, abundance as compared with the old-growth forest. This generally indicates that forest stands are developing and that regenerated tree species are present in the forest. In contrast, the old-growth forests had a significantly higher number of large individuals \geq 40 cm DBH; individuals with small diameter sizes were predominant in the secondary forests. The bar charts demonstrated a lack of large stems, and no individuals grew larger than 50 cm DBH in the first two phases. The biggest trees observed in the third successional phase were 75-80 cm, whereas in the undisturbed forest they grew up to 100-105 cm.

The proportional distribution of the basal area using DBH interval classes is given in Figure 5.1. Like the diameter distribution, the pattern of basal distribution (an inverted-J shaped curve) was observed in three successional phases; however, the trends in basal area distribution differed in the old growth forest, where the distribution peaked at a DBH of 15-20 cm in the earliest and latest phases. In the middle phase, the highest basal area was found in the 10-15 cm range; it was in the 45-50 cm diameter classes in the undisturbed forest, respectively. The basal area for those diameter classes \leq 40 cm DBH was always significantly higher in the regenerating forests than in the mature forest. No basal area contribution of the diameter \geq 50 cm was obtained in the first two phases of succession. Approximately 6.6% and 42.2% of the total basal area were respectively found in the latest phase and in the undisturbed forest.

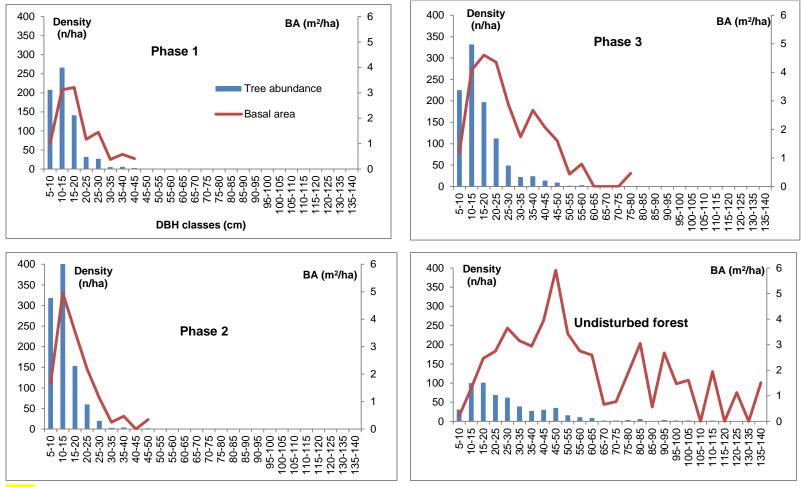


Fig. 6 The distribution of diameter classes and the basal area of all stems ≥ 5 cm DBH in each phase of succession and the undisturbed forest in Ben En National Park, Vietnam.

7.3 Tree composition of species and family of all tree species

The 10 most dominant tree species of the three stages of succession and undisturbed forest are shown in Table 2 and Appendices 1, 2, 3, and 4. 58 species were recorded in the early stage after 14-15 years fallow; most are light-demanding pioneer species such as *Vernicia montana* and *Alangium chinense*. The top three species captured in this forest stand formed around 150% of the total IVI, while 55 other species contributed 151% combined. Of these three top species, the most essential was *Vernicia montana* which contributed approximately 87% (nearly one-third) of the total IVI. This species also presented the greatest basal area (5.26 m² ha⁻¹) with 258 individuals showing 100% frequency in the plots sampled. The second highest basal area belonged to the *Alangium chinense* with 2.44 m² ha⁻¹ and 51.5% IVI. In comparison with the other two stages surveyed in the 20 sample plots, this stage represented the lowest basal area and tree abundance.

In the intermediate stage, the dominating tree species were three light-demanding species: *Hypericum japonicum, Alangium chinense*, and *Vernicia montana*. The tree abundance of each species was a respective 340, 99, and 90 individuals ha⁻¹ and together they contributed 56.4% of the total abundance. Of these species, *Hypericum japonicum* ranked first in absolute abundance, dominance, and frequency, but *Alangium chinense* and *Vernicia montana* contributed approximately 27% of the IVI each. Of the 80 species identified in the 20 sample plots, *Hypericum japonicum* was present in all plots.

115 species were found in the late stage, accounting for more than 80% of the total number of species in all three phases combined. This phase showed the largest variables of total basal area, tree abundance, species richness, and families. Of the ten most dominant species, *Cinnamomum tetragonum* contributed the largest IVI (19.5%); nine other species accounted for approximately 10% of the IVI each. The top five species accounted for about 67.9% of total value of the IVI, while the top 10 species comprised approximately only 115% of the total IVI; species abundance and dominance were thus shared equally by all of them.

Table 2 The 10 most dominant species of all stems with a DBH ≥ 5 cm in the three phases of succession and the undisturbed forest in Ben En National Park, Vietnam.

ance 1 ² /ha] 5.26 2.44 0.47 0.43 0.37 0.43 0.27 0.13	Frequency [%] 100 100 55 50 40 25 40 35	51.5 11.7 9.7
5.26 2.44 0.47 0.43 0.37 0.43 0.27 0.13	100 100 55 50 40 25 40	86.8 51.5 11.7 9.7 8.3 6.8
2.44 0.47 0.43 0.37 0.43 0.27 0.13	100 55 50 40 25 40	
2.44 0.47 0.43 0.37 0.43 0.27 0.13	100 55 50 40 25 40	51.5 11.7 9.7 8.3 6.8
2.44 0.47 0.43 0.37 0.43 0.27 0.13	100 55 50 40 25 40	51.5 11.7 9.7 8.3 6.8
0.47 0.43 0.37 0.43 0.27 0.13	55 50 40 25 40	11.7 9.7 8.3 6.8
0.43 0.37 0.43 0.27 0.13	50 40 25 40	9.7 8.3 6.8
0.37 0.43 0.27 0.13	40 25 40	8.3 6.8
0.43 0.27 0.13	25 40	6.8
0.27 0.13	40	
0.13		••••
		6.2
0.11	45	6.0
		5.9
2.04		100.4
12.2		300
3.73	100	69.0
1.61	90	27.7
1.48	95	26.2
0.73	55	11.6
0.81	50	11.4
0.52	45	9.7
0.33	55	8.4
0.41	50	7.9
0.26	60	7.6
0.35	45	7.5
4.06		113
14.3		300
2.25	80	19.5
1.54	65	13.4
	0.25 2.04 12.2 3.73 1.61 1.48 0.73 0.81 0.52 0.33 0.41 0.26 0.35 4.06 14.3	0.25 35 2.04 35 12.2 3.73 100 1.61 90 1.48 1.48 95 0.73 0.73 55 0.81 50 0.52 45 0.33 55 0.41 50 0.26 60 0.35 45 4.06 4.06 14.3 2.25 80 80

Total	516	41.5		300
100 other species	294	26.4		189
Wrightia laevis	17	0.57	60	7.9
Mellettia lasiopetala	22	0.70	45	8.3
Schima superba	21	0.50	60	8.5
Gironniera cuspidata	21	0.67	60	8.9
Cinnamomum tetragonum	22	1.48	45	10.2
Cinnamomum subavenium	18	1.85	60	11.1
Erythrophleum fordii	18	2.02	55	11.3
Gironniera subaequalis	30	1.42	80	13.5
Mischocarpus oppositifolius	22	2.93	50	14.0
Pometia pinnata	31	2.90	80	17.3
Undisturbed forest				
Total	944	26.3		300
95 other species	532	13.7		182
Mellettia lasiopetala	29	0.80	55	8.4
Sapium discolor	22	1.25	70	9.9
Alangium chinense	49	1.04	30	10.4
Schima superba	48	0.75	65	10.6
Gironniera subaequalis	26	1.49	55	10.7
Gironniera mollissima	34	1.15	70	10.9
Ficus vasculosa	44	0.82	85	11.3
Gironniera cuspidata	42	1.44	70	12.8

It is clear, then, that the species composition has indeed changed through time. In terms of the IVI value, *Vernicia montana* dominated in the first stage (258 individuals ha⁻¹) with an IVI value that was twice that of the next-highest species, *Alangium chinense*. *Hypericum japonicum* was the most dominant species in the second phase (340 individuals ha⁻¹), while *Alangium chinense* ranked second, followed by *Vernicia montana*. It was observed that *Vernicia montana*, *Alangium chinense*, and *Hypericum japonicum* were the most important species in the early phase but were less common in the later ones, whereas *Cinnamomum tetragonum*, and *Pometia pinnata* were common in the third stage but much rarer in the first one.

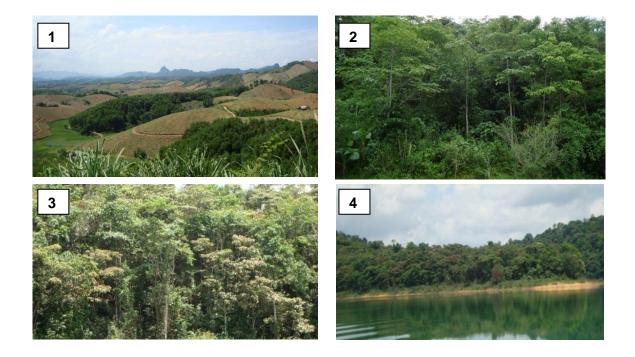


Fig. 7 Four pictures representing four different forest situations: (1) Bare land; (2) The early stage (14-15 years after abandonment); (3) The intermediate phase (19-20 years); and (4) The late phase (25-26 years).

In comparison with the secondary forest, the old-growth forest had a very different floristic composition with an abundant amount of large tree species such as *Pometia pinnata* and *Gironniera cuspidata*. The highest number of stems counted in the undisturbed forest belonged to *Pometia pinnata* and *Gironniera subaequalis* (31 and 30 individuals, respectively). Across 25 sample plots, only 13 species (11.8% of total number of species) had more than 10 individuals, while 74 species (67%) were made up of less than six individuals. Two species, *Pometia pinnata* and *Gironniera cuspidate*, had an absolute frequency of 80%, whereas 41 species (37%) occurred in at least one sample plot.

7.4 Tree composition of family of all tree species

Of the 43 families identified over all the study sites as indicated in Table 3, Euphorbiaceae was the most dominant based on taxonomic diversity (represented by 8 species) in the phase 1, whereas Lauraceae was the most well-represented in the two later phases and old-growth forest. 11 and 16 species belonging to this family were found in the second stage and the undisturbed forest, respectively. 26 families were common to all five sites, two only appeared in the third phase, and two were restricted to the undisturbed forest. The highest family number (19) represented by a single species was found in the first two successional

phases and was lowest in the old-growth forest (10 out of 36 families). A similar pattern was found in terms of family abundance; of the 36 families in the undisturbed forest, two were represented by one individual, while two, eight, and seven families with a single individual were respectively counted in the first, second, and third phases.

Table 3 The species number of each family of all stems with a DBH ≥ 5 cm identified in the three phases of succession and undisturbed forests in Ben En National Park, Vietnam.

Family	Phase 1	Phase 2	Phase 3	Undisturbed forest
Alangiaceae	1	1	1	1
Amaranthaceae	0	0	0	2
Anacardiaceae	1	1	2	4
Annonaceae	0	1	1	0
Apocynaceae	4	4	2	2
Aquifoliaceae	0	0	1	0
Araliaceae	0	0	1	1
Bignoniaceae	1	1	2	2
Burseraceae	4	6	4	4
Caesalpiniaceae	1	2	3	2
Clusiaceae	2	1	3	3
Dilleniaceae	1	0	0	2
Dipterocarpaceae	1	1	1	2
Ebenaceae	0	1	1	3
Elaeocarpaceae	1	1	1	1
Euphorbiaceae	8	6	6	2
Fabaceae	2	1	2	2
Fagaceae	1	4	9	9
Hypericaceae	1	1	1	0
Juglandaceae	0	0	1	0
Lamiaceae	1	0	0	0
Lauraceae	5	11	20	16
Lythraceae	1	0	0	1
Magnoliaceae	2	3	4	6
Meliaceae	3	1	6	9
Mimosaceae	0	1	2	1
Moraceae	3	5	7	6

	0	4	0	
Myristicaceae	2	1	2	2
Myrtaceae	2	3	5	5
Opiliaceae	0	0	0	1
Oxalidaceae	1	1	1	1
Phyllanthaceae	0	1	1	1
Rosaceae	1	1	1	1
Rubiaceae	0	1	1	0
Rutaceae	1	1	0	0
Sapindaceae	1	4	4	4
Sapotaceae	0	0	2	3
Sterculiaceae	1	3	4	2
Symplocaceae	1	1	2	2
Theaceae	0	2	2	2
Tiliaceae	1	2	1	1
Ulmaceae	2	3	5	3
Verbenaceae	1	3	3	2

Based on tree abundance and basal area, Euphorbiaceae was abundant in the first phase with 291 individuals ha⁻¹ and 5.87 m² ha⁻¹ respectively accounting for approximately 42% and 50% of the total abundance and basal area, whereas Hypericaceae ranked first in the middle phase. Ulmaceae dominated the DNoLF with 25% of the basal area, while Lauraceae scored the highest tree abundance and basal area in the latest phase and the UDNoLF. It is worth noting that Euphorbiaceae and Hypericaceae were ranked in the top five most abundant families in the first two successional species; however, they were absent from the top five families in the third phase and mature forests.

7.5 Diversity patterns of all tree species

The summary for the various diversity indices is shown in Table 4. The species number and diversity indices increased along with the forest age chronosequence and there was an increasing trend in the Shannon-Weiner index. The H' values for the early, intermediate and late phases were 2.58, 2.84 and 4.01, respectively, while 4.08 were recorded in the undisturbed forest.

Table 4 The species richness, Shannon-Wiener index, Evenness index, and Simpson's diversity index of all trees with a DBH ≥ 5 cm collected in the three phases of succession and the undisturbed forest in Ben En National Park, Vietnam.

Variables	Year sine	Undisturbed		
	14-15	19-20	25-26	forest
Species number [n/ha]	58	80	115	110
Shannon-Wiener index (H')	2.58	2.84	4.01	4.08
Evenness index [%]	63.5	64.7	84.3	86.9
Simpson's diversity index (D)	0.18	0.16	0.03	0.02

These figures indicate that the undisturbed forest was the most complex in species diversity, whereas the early phase was the simplest community in terms of species composition. A similar pattern was revealed in Simpson's diversity index which ranged from 0.02 to 0.16; the highest value was found in the undisturbed forest, the lowest in the first phase. The Evenness was highest in the old-grow forest, followed by the late stage; the lowest was in the earliest stage. All variables calculated in the earlier phases were lower than those of the latest phase and old-growth forests, which could be explained by the fact that the high absolute abundance of *Vernicia montana* and *Hypericum japonicum* (approximately 37% of the total tree abundance ha⁻¹ each) was recorded in the first and second phases.

7.6 Diversity of tree species producing NTFPs classified by parts used

Of 164 tree species identified in four forest sites, a total of 44 species belonging to 23 families classified by parts used produced non-timber forest products, of which 17 species were found in the first phase, 26, 27, and 24 were recorded in the second, thirst and undisturbed forests (Table 5). Almost tree species producing NTFPs were found in the secondary succession in abandoned shifting cultivation. Edible fruit was extracted from 26 out of 44 species, while 12 species can produce leaves for using. When considering the number of different uses per plant family, the Euphorbiaceae represented the most important, with five species, followed by the Burseraceae, Lauraceae and Moraceae (four species each).

Local name	Scientific name	Family	Part(s) used
Ba bét	Mallotus decipiens	Euphorbiaceae	Leaves
Ba bét đỏ	Mallotus metcalfianus	Euphorbiaceae	Leaves
Bã đậu	Croton tiglium	Euphorbiaceae	Stem
Ba gạc lá xoan	Rauvolfia verticillata	Apocynaceae	Leaves
Bồ kết	Gleditsia australis	Caesalpiniaceae	Fruit
Bứa	Garcinia oblongifolia	Clusiaceae	Leaves
Bưởi bung	Acronychia pedunculata	Rutaceae	Leaves
Chân chim	Schefflera octophylla	Araliaceae	Leaves
Chay bắc bộ	Artocarpus tonkinensis	Moraceae	Bark
Chay lá bồ đề	Artocarpus styracifolius	Moraceae	Bark
Chay rừng	Artocarpus tonkinensis	Moraceae	Bark
Cò ke	Grewia paniculata	Tiliaceae	Fruit
Dâu da đất	Baccaurea sapida	Phyllanthaceae	Edible fruit
Dâu da xoan	Spondias lakoensis	Anacardiaceae	Edible fruit
Dẻ	Castanopsis annamensis	Fagaceae	Fruit
Dẻ ăn quả	Quercus platycalyx	Fagaceae	Edible fruit
Dẻ gai	Castanopsis lecomtei	Fagaceae	Fruit
Đẻn	Vitex leptobotrys	Verbenaceae	Stem
Đẻn 3 lá	Vitex trifolia	Verbenaceae	Stem
Đẻn 5 lá	Vitex quinata	Verbenaceae	Stem
Găng	Canthium horridum	Rubiaceae	Fruit
Giổi ăn quả	Michelia tonkinensis	Magnoliaceae	Edible fruit
Kháo	Machilus sp.	Lauraceae	Bark
Khế	Averrhoa sp.	Oxalidaceae	Edible fruit
Khế rừng	Averrhoa carambola	Oxalidaceae	Edible fruit
Nhội	Bischofia javanica	Euphorbiaceae	Leaves
Quế lợn	Cinnamomum bejolghota	Lauraceae	Bark
Rau sắng	Melientha suavis	Opiliaceae	Leaves
Re gừng	Cinnamomum ovatum	Lauraceae	Leaves, barl
Sảng nhung	Sterculia lanceolata	Sterculiaceae	Fruit
Sấu tía	Lagerstroemia tomentosa	Lythraceae	Edible fruit
Sung rừng	Ficus sp.	Moraceae	Edible fruit
Trám chim	Canarium parvum	Burseraceae	Edible fruit

 Table 5
 Diversity of tree species producing NTFPs classified by parts used

Trám đen	Canarium tramdenum	Burseraceae	Edible fruit
Trám hồng	Canarium littorale	Burseraceae	Edible fruit
Trám trắng	Canarium album	Burseraceae	Edible fruit
Trầu	Vernicia montana	Euphorbiaceae	Fruit
Trường vải	Paranephelium spirei	Sapindaceae	Fruit
Ươi	Sterculia tonkinensis	Sterculiaceae	Fruit
Vối thuốc	Schima wallichii	Theaceae	Leaves
Vối thuốc răng cưa	Schima superba	Theaceae	Leaves
Vù hương	Cinamomum blansae	Lauraceae	Whole plant
Vú sữa	Chrysophyllum cainito	Sapotaceae	Edible fruit
Xoài rừng	Mangifera minitifolia	Anacardiaceae	Edible fruit

Fig.8: Collecting and sharing information about tree species producing non-timber forest products with park ranger.

Fig. 9: Collecting information from local men and elderly person

Fig. 10: Collecting information from local women

Fig. 11: Collecting information from the whole group

7.7. Population density of tree species producing NTFPs classified by parts used

Density of 44 species producing NTFPs is shown in Table 6. Overall, density was comparatively higher in successional forests than undisturbed one. The majority of the species occur with maximum densities of 0-5 stems/ha. Many species have even less than one producing individual per hectare. Only few species occur in higher densities (> 20 stems/ha) in specific habitat types. 11 out of 44 species producing NTFFs had only one individual, while 17 species were found at density of greater than two individuals and smaller than 5. The density of tree species producing NTFPs was highest in the first phase (330 individuals/ha), followed by the second phase (202 stems/ha), the third one (199 stems/ha) and undisturbed forest (72 individuals/ha).

The NTFP abundances were different in four forest sites. As indicated in Table 6, the lowest number of tree species producing NTFPs were found in the first phase (17 species), while the highest was counted in the third one (27). In the former phase, *Vernicia Montana* had the highest mean population of ha⁻¹ (258 individuals) and six tree species had only 1-2 individuals/ha. In the second phase, out of 26 species, *Vernicia Montana* had the highest mean population per ha (90 individuals), while the lowest, one per ha, was noted each for *Rauvolfia verticillata, Rauvolfia verticillata, Artocarpus tonkinensis, Grewia paniculata, Baccaurea sapida, Castanopsis annamensis, Vitex leptobotrys, Vitex quinata, Canthium horridum, Averrhoa sp., Canarium tramdenum. Ten out of 27 species counted in the third phase had one individual, while almost species with only stem/ha were found in the undisturbed forest.*

The floristic composition of successional and undisturbed forests was different (Table 6). Pioneer species are clearly favoured in the former forest since the logging operations create apparently optimal growing conditions, as can be concluded from the maximum densities found in these logged-over forests, such as *Vernicia Montana, Mallotus decipiens,* and *Mallotus metcalfianus,* whilst the densities of shade-bearers as *Castanopsis annamensis* and *Quercus platycalyx* was lower, even they were absent.

28

		Density of species collected in				
Local name	Scientific name	Phase 1	Phase 2	Phase 3	UD	Total
		(ha)	(ha)	(ha)	(ha)	
Ba bét	Mallotus decipiens	5	2	-	-	7
Ba bét đỏ	Mallotus metcalfianus	2	-	-	-	2
Bã đậu	Croton tiglium	-	23	5	-	28
Ba gạc lá xoan	Rauvolfia verticillata	1	1	1	-	3
Bồ kết	Gleditsia australis	-	-	1	-	1
Bứa	Garcinia oblongifolia	6	1	6	1	14
Bưởi bung	Acronychia pedunculata	2	3	-	-	5
Chân chim	Schefflera octophylla	-	-	4	2	6
Chay bắc bộ	Artocarpus tonkinensis	-	2	-	1	3
Chay lá bồ đề	Artocarpus styracifolius	-	-	1	-	1
Chay rừng	Artocarpus tonkinensis	-	1	1	-	2
Cò ke	Grewia paniculata	-	1	-	-	1
Dâu da đất	Baccaurea sapida	-	1	1	3	5
Dâu da xoan	Spondias lakoensis	1	-	-	1	2
Dẻ	Castanopsis annamensis	2	1	4	4	11
Dẻ ăn quả	Quercus platycalyx	-	-	-	1	1
Dẻ gai	Castanopsis lecomtei	-	-	1	3	4
Đẻn	Vitex leptobotrys	-	1	3	-	4
Đẻn 3 lá	Vitex trifolia	11	12	8	3	34
Đẻn 5 lá	Vitex quinata	-	1	3	-	4
Găng	Canthium horridum	-	1	-	-	1
Giổi ăn quả	Michelia tonkinensis	-	-	-	1	1
Kháo	Machilus sp.	-	-	1	-	1
Khế	Averrhoa sp.	7	1	1	-	9
Khế rừng	Averrhoa carambola	-	-	-	1	1
Nhội	Bischofia javanica	1	-	-	2	3
Quế lợn	Cinnamomum bejolghota	-	-	1	-	1
Rau sắng	Melientha suavis	-	-	-	2	2
Re gừng	Cinnamomum ovatum	-	-	2	3	5
Sảng nhung	Sterculia lanceolata	-	3	5	-	8
Sấu tía	Lagerstroemia tomentosa	2	-	-	3	5
Sung rừng	Ficus sp.	9	3	3	-	15
Trám chim	Canarium parvum	7	17	29	7	60
Trám đen	Canarium tramdenum	2	2	-	-	4
Trám hồng	Canarium littorale	-	10	9	4	23

Table 6: Density of tree species producing NTFPs classified by parts used in the four forest sites in Ben En National Park, Vietnam

Trám trắng	Canarium album	7	11	23	2	43
Trầu	Vernicia montana	258	90	28	-	376
Trường vải	Paranephelium spirei	-	3	4	3	10
Ươi	Sterculia tonkinensis	-	1	4	-	5
Vối thuốc	Schima wallichii	-	-	-	1	1
Vối thuốc răng cưa	Schima superba	-	6	48	21	75
Vù hương	Cinamomum blansae	7	-	2	1	10
Vú sữa	Chrysophyllum cainito	-	-	-	1	1
Xoài rừng	Mangifera minitifolia	-	4	-	1	5
Total	of tree species	17	26	27	24	44

UD: Undisturbed forest

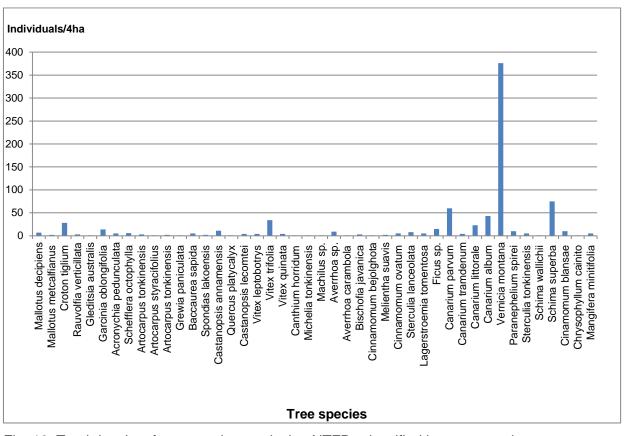


Fig. 12: Total density of tree species producing NTFPs classified by parts used

7.8 Diversity of tree species classified by different uses

The results show that non-timber products identified by the local inhabitants and park rangers were used for fuelwood, building materials, food, medicine, resins, furnitune, flavor, and spice (Table 7). The family with the largest number of uses was Euphorbiaceae with seven documented uses, followed by Amaranthaceae (six uses), and Lamiaceae (five), while

11 families were recorded with one use only. For medicinal uses, Theaceae and two species *Mallotus decipiens* and *Mallotus metcalfianus* of Euphorbiaceae were the most important families in terms of medicinal uses, while Moraceae was particularly important for resin. Lauraceae had many species producing flavor, while a high number of family (Anacardiaceae, Araliaceae, Clusiaceae, Fagaceae, Lauraceae, Magnoliaceae, Oxalidaceae, and Phyllanthaceae) produced spice.

Vietnamese name	Scientific name	Family name	Purpose Uses
Ba bét	Mallotus decipiens	Euphorbiaceae	Medicinal; firewood
Ba bét đỏ	Mallotus metcalfianus	Euphorbiaceae	Medicinal; firewood
Bã đậu	Croton tiglium	Euphorbiaceae	Resin
Ba gạc lá xoan	Rauvolfia verticillata	Apocynaceae	Resin
Ban ban	Hypericum japonicum	Hypericaceae	Firewood
Bồ kết	Gleditsia australis	Caesalpiniaceae	Firewood
Bời lời	Litsea griffithii	Lauraceae	Furniture and oil
Bời lời vòng	Litsea verticillata	Lauraceae	Furniture
Bứa	Garcinia oblongifolia	Clusiaceae	Furniture and spice
Bưởi bung	Acronychia pedunculata	Rutaceae	Medicinal and firewood
Cà ổi	Castanopsis indica	Fagaceae	Furniture
Chân chim	Schefflera octophylla	Araliaceae	Firewood and spice
Chay bắc bộ	Artocarpus tonkinensis	Moraceae	Firewood and resin
Chay lá bồ đề	Artocarpus styracifolius	Moraceae	Firewood and resin
Chay rừng	Artocarpus tonkinensis	Moraceae	Firewood and resin
Chè đuôi	Camellia caudata	Theaceae	Firewood
Chò nâu	Dipterocarpus retusus	Dipterocarpaceae	Furniture
Chòi mòi	Antidesma acidum	Euphorbiaceae	Firewood
Chua khét	Dosoxylum acutangulum	Meliaceae	Furniture
Cò ke	Grewia paniculata	Tiliaceae	Firewood
Cơi	Pterocarya tonkinensis	Juglandaceae	Furniture
Côm tầng	Elaeocarpus griffithii	Elaeocarpaceae	Street tree
Đa gừ	Ficus curtipes	Moraceae	Furniture
Đa quả xanh	Ficus annulata	Moraceae	Firewood
Đa tía	Ficus altissima	Moraceae	Firewood
Dâu da đất	Baccaurea sapida	Phyllanthaceae	Firewood and spice
Dâu da xoan	Spondias lakoensis	Anacardiaceae	Firewood and spice
Dẻ	Castanopsis annamensis	Fagaceae	Furniture
Dẻ ăn quả	Quercus platycalyx	Fagaceae	Furniture
Dẻ cau	Quercus sp.	Fagaceae	Furniture
Dẻ đỏ	Castanopsis hystrix	Fagaceae	Furniture
Dẻ gai	Castanopsis lecomtei	Fagaceae	Furniture and spice
Đẻn	Vitex leptobotrys	Verbenaceae	Furniture
Đẻn 3 lá	Vitex trifolia	Verbenaceae	Furniture

Đẻn 5 lá Dền cơm Đẻn đỏ Dền tía Đinh dai Đinh hương Đinh thối Dọc vàng Dung đen Dung giấy Dung nam Đuôi chồn Đuôi trâu Găng Giổi ăn quả Giổi bà Giổi bắc bộ Giổi nhung Giổi xanh Gôi Gội đỏ Gội gà Gội gác Gội nếp Gội núi Gội tẻ Gội trắng Hu đay Hu lông Kè đuôi dông Kháo Kháo lá to Kháo nước Kháo vàng Khế Khế rừng Lim xanh Lim xet Lõi tho Lọng bàng Lòng mang Long não Lòng trứng Mãi táp Mán đỉa

Vitex guinata Amaranthus spinosus Vitex leptobotrys Amaranthus tricolor Markhamia stipulata Dysoxylum cauliflorum Fernandoa brilletii Garcinia multiflora Symplocos lauria Symplocos atriolivacea Symplocos cochinchinensis Uraria crinita Mellettia lasiopetala Canthium horridum Michelia tonkinensis Michelia banlanse Michelia tonkinensis Paramechelia braianensis Michelia mediocris Aphanamixis silvestris Aglaia dasyclada Aglaia silvestric Aphanamixis polystachya Aglaia spectabilis Aglaia roxburghiana Aglaia perviridis Aphanamixis grandifolia Trema orientalis Trema politoria Markhamia cauda-felina Machilus sp. Phoebe tavoyana Phoebe paniculata Machilus bonii Averrhoa sp. Averrhoa carambola Erythrophleum fordii Oliv Peltophorum tonkinensis Gmelina arborea Dillenia heterosepala Pterospermum hetrophyllum Cinnamomum camphora Lindera racemosa Aidia oxyodonta Archidendron clypearia

Verbenaceae Amaranthaceae Verbenaceae Amaranthaceae Bignoniaceae Meliaceae Bignoniaceae Clusiaceae Symplocaceae Symplocaceae Symplocaceae Fabaceae Fagaceae Rubiaceae Magnoliaceae Magnoliaceae Magnoliaceae Magnoliaceae Magnoliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Ulmaceae Ulmaceae Bignoniaceae Lauraceae Lauraceae Lauraceae Lauraceae Oxalidaceae Oxalidaceae Caesalpiniaceae Caesalpiniaceae Lamiaceae Dilleniaceae Sterculiaceae Lauraceae Lauraceae Rubiaceae Mimosaceae

Furniture Furniture Furniture Furniture Firewood Furniture Furniture Furniture Firewood Firewood Firewood Furniture Furniture Flavor Furniture and spice Furniture and firewood Furniture Firewood Firewood Furniture Furniture and flavor Furniture and flavor Furniture and flavor Furniture and flavor Firewood and spice Firewood and spice Furniture Firewood and Furniture Furniture Furniture Furniture Furniture; oil and flavor Furniture Furniture Firewood

Mán đỉa trâu Máu chó lá nhỏ Máu chó lá to Mé cò ke Mít rừng Mò lá lớn Mò lá tròn Nanh chuôt Ngát Ngát lông Ngát vàng Ngô đồng Nhọ nồi Nhọc lá to Nhôi Nhưa ruồi Quế lơn Ràng ràng xanh Rau sắng Re đá Re đỏ Re gân lõm Re gừng Re hương Re mới Re mới lá to Re nhớt Re sâu Re thơm Re xanh Săng lẻ Sảng nhung Sấu tía Sến đất Sến mât Sổ Sồi bắc giang Sồi đỏ Sòi núi Sồi phảng Sòi tía Sơn rừng Son ta Song xanh Sụ lá kiếm

Archidendron lucidum Knema globularia Knema pierrei Warb Grewia paniculata Roxb. Cryptocarya sp Cryptocarya annanmensis Cryptocarya impressa Cryptocarya lenticellata Gironniera cuspidata Gironniera mollissima Gironniera subaequalis Firmiana simplex Diospyros apiculata Polyalthia laui Bischofia javanica llex rotunda Cinnamomum bejolghota Ormosia pinnata Melientha suavis Cinnamomum mairei Cinnamomum tetragonum Cinnamomum impressimeurium Cinnamomum ovatum Cinnamomum iners Cinnamomum burmannii Cinnamomum subavenium Cinnamomum sp. Machilus bonii Cinnamomum sp1. Cinnamomum parthenoxylon Lagerstroemiatomentsa Presl. Sterculia lanceolata Dracontomelum duperreanum Sinosideroxylon racemosum Madhuca pasquieri Dillenia scabrella Lithocarpus bacgiangnenis Lithocarpus elegans Balakata baccata Lithocarpus areca Sapium discolor Rhus rhetsoides Rhus succedanea Actinodaphne obovata Phoebe angustifolia

Mimosaceae Myristicaceae **Myristicaceae** Tiliaceae Lauraceae Lauraceae Lauraceae Lauraceae Ulmaceae Ulmaceae Ulmaceae Sterculiaceae Ebenaceae Annonaceae Euphorbiaceae Aquifoliaceae Lauraceae Fabaceae Opiliaceae Lauraceae Lythraceae Sterculiaceae Anacardiaceae Sapotaceae Sapotaceae Dilleniaceae Fagaceae Fagaceae Euphorbiaceae Fagaceae Euphorbiaceae Anacardiaceae Anacardiaceae Lauraceae Lauraceae

Firewood Furniture Furniture Firewood and spice Furniture and spice Firewood Firewood Furniture Furniture Furniture Furniture Furniture Firewood Furniture Furniture and street tree Furniture and flavor Furniture and flavor Firewood Firewood and food Furniture Furniture Furniture Furniture and flavor Firewood Furniture Furniture Furniture Furniture Furniture Furniture Furniture Firewood and food Furniture and foods (fruits) Furniture Furniture Furniture Furniture Furniture Furniture Furniture Firewood Firewood and flavor Firewood Furniture Furniture

Sữa	Alstonia scholaris	Apocynaceae	Furniture and street tree
Sui	Antiaris toxicaria	Moraceae	Furniture
Sung	Ficus racemosa	Moraceae	Furniture and food (fruit)
Sung rừng	Ficus sp.	Moraceae	Furniture and food (fruit)
Táu muối	Vatica odorata	Dipterocarpaceae	Firewood
Thành ngạnh	Cratoxylum polyanthum	Clusiaceae	Firewood
Thẩu tấu	Aporosa dioica	Euphorbiaceae	Furniture
Thị lông	Diospyros hirsuta	Ebenaceae	Firewood
Thị rừng	Diospyros montana	Ebenaceae	Firewood
Thôi ba	Alangium chinense	Alangiaceae	Furniture
Thừng mực lông	Wrightia pubscens	Apocynaceae	Furniture
Thừng mực mỡ	Wrightia laevis	Apocynaceae	Furniture
Trâm	Syzygium brachiatum	Myrtaceae	Furniture
Trâm bắc bộ	Syzygium tonkinensis	Myrtaceae	Furniture
Trám chim	Canarium parvum	Burseraceae	Furniture and food
Trám đen	Canarium tramdenum	Burseraceae	Furniture and food
Trâm đỏ	Syzygium zeylanicum	Myrtaceae	Furniture
Trám hồng	Canarium littorale	Burseraceae	Furniture and food
Trâm khế	Syzygium sp	Myrtaceae	Furniture
Trâm lá bóng	Syzygium parviflorum	Myrtaceae	Furniture
Trâm núi	Syzygium levinei	Myrtaceae	Furniture
Trám trắng	Canarium album	Burseraceae	Furniture and food
Trâm trắng	Syzygium chanlos	Myrtaceae	Furniture
Trám trầu	Mytilaria laosensis	Burseraceae	Furniture
Trầu	Vernicia montana	Euphorbiaceae	Firewood and flavor
Trường kẹn	Mischocarpus oppositifolius	Sapindaceae	Furniture
Trường mật	Pometia pinnata	Sapindaceae	Furniture
Trường sâng	Amesiodendron chinense	Sapindaceae	Furniture
Trường vải	Paranephelium spirei	Sapindaceae	Furniture
Ươi	Sterculia tonkinensis	Sterculiaceae	Furniture, flavor and food
Vàng tâm	Manglietia dandyi	Magnoliaceae	Furniture
Vạng trứng	Endospermum sinensis	Euphorbiaceae	Furniture
Vỏ mãn	Ficus vasculosa	Moraceae	Furniture
Vối thuốc	Schima wallichii	Theaceae	Firewood and medicinal
Vối thuốc răng cưa	Schima superba	Theaceae	Firewood and medicinal
Vù hương	Cinamomum blansae	Lauraceae	Furniture
Vú sữa	Chrysophyllum cainito	Sapotaceae	Furniture and food
Xoài rừng	Mangifera minitifolia	Anacardiaceae	Furniture and food
Xoan đào	Prunus arborea	Rosaceae	Furniture
Xoan nhừ	Spondias axillaris	Anacardiaceae	Furniture

A total of 164 species covering 43 families were recorded from the four forest sites (Table 7). The majority of species recorded in the sampled plots were used either as furniture or as firewood (Fig. 3). Of these, 42 species were utilized for firewood; 115 for furniture, 45 species

were classes into two utilization categories (furniture and oil, firewood and flavor, firewood and medicinal, furniture and flavor, furniture and food, furniture and spice), only five were medicinal species, including *Schima wallichii, Schima superba, Acronychia pedunculata, Mallotus decipiens, Mallotus metcalfianus*.

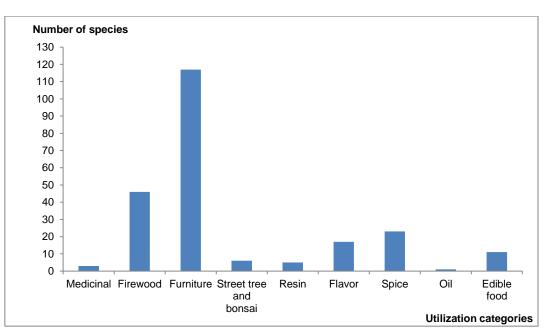


Fig. 13: The number of tree species classified into a single utilization category (mixed utilization were not mentioned in this figure)

7.9 Diversity of tree species producing NTFPs preffered by local people

Of the 164 tree species recorded in the four forest sites, three spcies (*Quercus platycalyx, Michelia tonkinensis*, and *Melientha suavis*) were extremely preffered by local people (Table 8). Of these three species, the first two species produced edible fruits and the third species' leaves were used for cooking. 29 species were mentioned by local people as "like", while they had no comments on the remaining species.

Local name	Scientific name	Extremly like	Like	Dislike	Note
Ba bét	Mallotus decipiens				N/A
Ba bét đỏ	Mallotus metcalfianus				N/A
Bã đậu	Croton tiglium				N/A
Ba gạc lá xoan	Rauvolfia verticillata				N/A

Table 8: Diversity of tree species preferred by local people (X means: Local people's choice)

Ban ban	Hypericum japonicum		N/A
Bồ kết	Gleditsia australis		N/A
Bời lời	Litsea griffithii		N/A
Bời lời vòng	Litsea verticillata		N/A
Bứa	Garcinia oblongifolia	Х	
Bưởi bung	Acronychia pedunculata		N/A
Cà ổi	Castanopsis indica		N/A
Chân chim	Schefflera octophylla	Х	
Chay bắc bộ	Artocarpus tonkinensis	Х	
Chay lá bồ đề	Artocarpus styracifolius	Х	
Chay rừng	Artocarpus tonkinensis	Х	
Chè đuôi	Camellia caudata		N/A
Chò nâu	Dipterocarpus retusus		N/A
Chòi mòi	Antidesma acidum	Х	
Chua khét	Dosoxylum acutangulum		N/A
Cò ke	Grewia paniculata	Х	
Соі	Pterocarya tonkinensis		N/A
Côm tầng	Elaeocarpus griffithii		N/A
Đa gừ	Ficus curtipes		N/A
Đa quả xanh	Ficus annulata		N/A
Đa tía	Ficus altissima		N/A
Dâu da đất	Baccaurea sapida	Х	
Dâu da xoan	Spondias lakoensis	Х	
Dẻ	Castanopsis annamensis	Х	
Dẻ ăn quả	Quercus platycalyx	Х	
Dẻ cau	Quercus sp.		N/A
Dẻ đỏ	Castanopsis hystrix		N/A
Dẻ gai	Castanopsis lecomtei	Х	
Đẻn	Vitex leptobotrys		N/A
Đẻn 3 lá	Vitex trifolia		N/A
Đẻn 5 lá	Vitex quinata		N/A
Dền cơm	Amaranthus spinosus		N/A
Đẻn đỏ	Vitex leptobotrys		N/A
Dền tía	Amaranthus tricolor		N/A
Đinh dại	Markhamia stipulata		N/A
Đinh hương	Dysoxylum cauliflorum		N/A
Đinh thối	Fernandoa brilletii		N/A
Dọc vàng	Garcinia multiflora		N/A
Dung đen	Symplocos lauria		N/A
Dung giấy	Symplocos atriolivacea		N/A
Dung nam	Symplocos cochinchinensis		N/A
Đuôi chồn	Uraria crinita		N/A
Đuôi trâu	Mellettia lasiopetala		N/A
Găng	Canthium horridum		N/A

Giối ăn quả	Michelia tonkinensis	Х	
Giổi bà	Michelia banlanse		N/A
Giổi bắc bộ	Michelia tonkinensis		N/A
Giổi nhung	Paramechelia braianensis		N/A
Giổi xanh	Michelia mediocris		N/A
Gội	Aphanamixis silvestris		N/A
Gội đỏ	Aglaia dasyclada		N/A
Gội gà	Aglaia silvestric		N/A
Gội gác	Aphanamixis polystachya		N/A
Gội nếp	Aglaia spectabilis		N/A
Gội núi	Aglaia roxburghiana		N/A
Gội tẻ	Aglaia perviridis		N/A
Gội trắng	Aphanamixis grandifolia		N/A
Hu đay	Trema orientalis		N/A
Hu lông	Trema politoria		N/A
Kè đuôi giông	Markhamia cauda-felina		N/A
Kháo	Machilus sp.		N/A
Kháo lá to	Phoebe tavoyana		N/A
Kháo nước	Phoebe paniculata		N/A
Kháo vàng	Machilus bonii		N/A
Khế	Averrhoa sp.	Х	
Khế rừng	Averrhoa carambola	Х	
Lim xanh	Erythrophleum fordii Oliv		N/A
Lim xẹt	Peltophorum tonkinensis		N/A
Lõi thọ	Gmelina arborea		N/A
Lọng bàng	Dillenia heterosepala		N/A
Lòng mang	Pterospermum hetrophyllum		N/A
Long não	Cinnamomum camphora		N/A
Lòng trứng	Lindera racemosa		N/A
Mãi táp	Aidia oxyodonta		N/A
Mán đỉa	Archidendron clypearia		N/A
Mán đỉa trâu	Archidendron lucidum		N/A
Máu chó lá nhỏ	Knema globularia		N/A
Máu chó lá to	Knema pierrei		N/A
Mé cò ke	Grewia paniculata	Х	
Mít rừng	Cryptocarya sp	Х	
Mò lá lớn	Cryptocarya annanmensis		N/A
Mò lá tròn	Cryptocarya impressa		N/A
Nanh chuột	Cryptocarya lenticellata		N/A
Ngát	Gironniera cuspidata		N/A
Ngát lông	Gironniera mollissima		N/A
Ngát vàng	Gironniera subaequalis		N/A
Ngô đồng	Firmiana simplex		N/A
Nhọ nồi	Diospyros apiculata		N/A

Nhọc lá to	Polyalthia laui		N/A
Nhội	Bischofia javanica	Х	
Nhựa ruồi	llex rotunda		N/A
Quế lợn	Cinnamomum bejolghota	Х	
Ràng ràng xanh	Ormosia pinnata		N/A
Rau sắng	Melientha suavis	Х	
Re đá	Cinnamomum mairei		N/A
Re đỏ	Cinnamomum tetragonum		N/A
Re gân lõm	Cinnamomum impressimeurium		N/A
Re gừng	Cinnamomum ovatum		N/A
Re hương	Cinnamomum iners		N/A
Re mới	Cinnamomum burmannii		N/A
Re mới lá to	Cinnamomum subavenium		N/A
Re nhớt	Cinnamomum sp.		N/A
Re sâu	Machilus bonii		N/A
Re thom	Cinnamomum sp1.		N/A
Re xanh	Cinnamomum parthenoxylon		N/A
Săng lẻ	Dracontomelon duperreanum		N/A
Sảng nhung	Sterculia lanceolata	Х	
Sấu tía	Lagerstroemia tomentosa	Х	
Sến đất	Sinosideroxylon racemosum		N/A
Sến mật	Madhuca pasquieri		N/A
Sổ	Dillenia scabrella		N/A
Sồi bắc giang	Lithocarpus bacgiangnenis		N/A
Sồi đỏ	Lithocarpus elegans		N/A
Sòi núi	Balakata baccata		N/A
Sồi phảng	Lithocarpus areca		N/A
Sòi tía	Sapium discolor		N/A
Sơn rừng	Rhus rhetsoides		N/A
Sơn ta	Rhus succedanea		N/A
Song xanh	Actinodaphne obovata		N/A
Sụ lá kiếm	Phoebe angustifolia		N/A
Sữa	Alstonia scholaris		N/A
Sui	Antiaris toxicaria		N/A
Sung	Ficus racemosa		N/A
Sung rừng	Ficus sp.	Х	
Táu muối	Vatica odorata		N/A
Thành ngạnh	Cratoxylum polyanthum		N/A
Thẩu tấu	Aporosa dioica		N/A
Thị lông	Diospyros hirsuta		N/A
Thị rừng	Diospyros montana		N/A
Thôi ba	Alangium chinense		N/A
Thừng mực lông	Wrightia pubscens		N/A
Thừng mực mỡ	Wrightia laevis		N/A

Trâm	Syzygium brachiatum			N/A
Trâm bắc bộ	Syzygium tonkinensis			N/A
Trám chim	Canarium parvum		Х	
Trám đen	Canarium tramdenum	Х		
Trâm đỏ	Syzygium zeylanicum			N/A
Trám hồng	Canarium littorale		х	
Trâm khế	Syzygium sp			N/A
Trâm lá bóng	Syzygium parviflorum			N/A
Trâm núi	Syzygium levinei			N/A
Trám trắng	Canarium album		х	
Trâm trắng	Syzygium chanlos			N/A
Trám trẩu	Mytilaria laosensis			N/A
Trẩu	Vernicia montana			N/A
Trường kẹn	Mischocarpus oppositifolius			N/A
Trường mật	Pometia pinnata			N/A
Trường sâng	Amesiodendron chinense			N/A
Trường vải	Paranephelium spirei		х	
Ươi	Sterculia tonkinensis			N/A
Vàng tâm	Manglietia dandyi			N/A
Vạng trứng	Endospermum sinensis			N/A
Vỏ mãn	Ficus vasculosa		х	
Vối thuốc	Schima wallichii			N/A
Vối thuốc răng cưa	Schima superba		х	
Vù hương	Cinamomum blansae			N/A
Vú sữa	Chrysophyllum cainito		х	
Xoài rừng	Mangifera minitifolia		х	
Xoan đào	Prunus arborea		х	
Xoan nhừ	Spondias axillaris			N/A

7.10 Population structure of tree species producing NTFPs

Figure 14 presents population structure of 44 tree species producing NTFPs recorded in four forest sites. With regard to the changes in the forest structure of the NTFP species, the overall population structure does not differ between proximal and distant sites and the distribution pattern of NTFP s in diameter-class was the inverted-J shape (Fig. 14). It is shown that merely the smaller size classes (10-30 cm dbh) are successional forests compared to undisturbed one. All the 44 NTFP species exhibit asymmetrical normal distribution with reduced recruitment in smaller size-classes and increased mortality in bigger size classes. In the lower classes (below 30 cm DBH), the most abundant species were *Vernicia Montana, Garcinia oblongifolia,* and *Croton tiglium*, while in the upper classes

(above 60 cm DBH), *Canarium littorale, Lagerstroemia tomentosa,* and *Cinamomum blansae* were the most abundant in undisturbed forests and absent in the three successional phases.

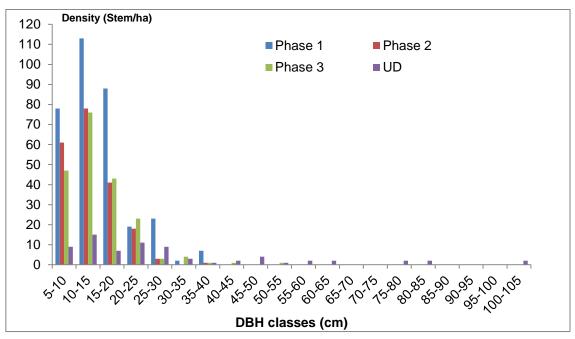


Fig. 14: Population structure of tree species producing NTFPs

8 Results of regeneration

8.1 The abundance of seedling and sapling

A description of the tree abundance of seedling, sapling, species and families sampled in the four forest sites are listed in Tables 9. The abundance of two different regeneration categories varied among the four forest sites. The highest abundance of seedlings and saplings was found in the phase 3 (386 individuals and 499 stems per 0.2 ha, respectively). Across all sites, the abundance of saplings was higher than that of seedlings; this abundance respectively contributed approximately 74.6%, 60.6%, 56.3% and 68.2% of the total regeneration counted in the first, second, third phases, and undisturbed forest. It can be said that a greater number of saplings revealed better regeneration potential for the forest stands.

At each forest site, the species number of seedlings and saplings was highest in the third phase, while the earliest phase and undisturbed forest held the lowest species richness of seedlings and saplings. Of these, the former site was particularly low, with recorded seedlings representing only 22 species from 16 families; comparatively, the later site contained 51 species representing 21 families as seedlings.

	Abundance	Species	Family
Forest site	[n/0.2 ha]	[n/0.2 ha]	[n/0.2 ha]
Phase 1			
Seedlings	91	22	16
Saplings	268	49	26
Total	359	55	30
Phase 2			
Seedlings	235	57	22
Saplings	362	78	32
Total	597	85	33
Phase 3			
Seedlings	386	66	28
Saplings	499	80	29
Total	885	95	31
Undisturbed forest			
Seedlings	167	51	21
Saplings	359	65	22
Total	526	79	26

Table 9The number of the stems, species, and families of the seedlings and saplingsfound in the four forest types in Ben En National Park, Vietnam.

As was the case for the species richness, a similar trend was evidenced at the same sites for the family number of regeneration. The second and third phases had the highest family number in terms of saplings with 32 and 29 families respectively. The first phase held the smallest family number of seedlings (16 families).

8.2 Diversity of regeneration (seedlings and saplings)

Table 10 shows the diversity pattern of seedlings and saplings across the four forest sites. The values of the three diversity indices of the regenerated trees varied greatly among the sites, with the results indicating that the highest values of the Shannon-Wiener diversity indices were recorded in the second and third phases, and followed by the undisturbed forest and first phase. A trend that was likewise was found for the Evenness index. It is thus clear

that of the four forest sites, the second phase was the most diverse, as evidenced by the Shannon and Simpson diversity indices.

Forest site	Shannon-Wiener	Simpson's	Evenness index
Forest site	index (H')	diversity index (D)	[%]
The first phase			
Seedlings [0.2 ha]	2.61	0.09	84.4
Saplings [0.2 ha]	2.69	0.16	69.1
All regeneration	2.86	0.12	71.3
The second phase			
Seedlings [0.2 ha]	3.51	0.04	86.8
Saplings [0.2 ha]	3.72	0.04	85.4
All regeneration	3.78	0.04	85.1
The third phase			
Seedlings [0.2 ha]	3.6	0.04	85.9
Saplings [0.2 ha]	3.64	0.04	83
All regeneration	3.75	0.04	82.3
Undisturbed forest			
Seedlings [0.2 ha]	3.56	0.03	90.6
Saplings [0.2 ha]	3.74	0.03	89.6
All regeneration	3.63	0.03	83

Table 10The Shannon-Wiener, Simpson's diversity, and Evenness indices of seedlingsand saplings of the four forest types in Ben En National Park, Vietnam.

8.3 Species composition of seedlings and saplings

Table 11 indicates that a majority of species were represented by different individuals which in turn varied from site to site. The structure of seedling and sapling populations was characterized by numerous species that occurred at low abundance in similar fashion to the adult population. With respect to species abundance, significant differences can be observed among the four forest sites. A total of 144 species were recorded in these four sites, of which 23 species were common and 50 species appeared only in one of four sites. Numerous species, inclduing, *Mallotus paniculatus, Mallotus floribundus*, and *Engelhardtia chrysolepsis*

were only present in the first phase, while *Litsea griffithii, Vitex leptobotrys*, and *Symplocos lauria* only appeared in the other forest sites (Appendix 5).

Table 11The 34 most abundant tree species of regeneration collected in the four forest
types in Ben En National Park, Vietnam, as ranked in descending order of the
total abundance of seedlings and saplings.

		The ab	Total			
Species	Family					
		P1	P2	P3	UD	
Pometia pinnata	Sapindaceae	-	80	65	25	170
Schima superba	Theaceae	1	22	96	19	138
Cinnamomum parthenoxylon	Lauraceae	3	17	88	26	134
Vernicia montana	Euphorbiaceae	102	4	-	-	106
Gironniera cuspidata	Ulmaceae	15	28	31	27	101
Syzygium chanlos	Myrtaceae	31	32	9	23	95
Syzygium zeylanicum	Myrtaceae	5	22	37	18	82
Alangium chinense	Alangiaceae	61	8	-	4	73
Wrightia laevis	Apocynaceae	14	18	22	16	70
Antidesma acidum	Euphorbiaceae	2	11	44	12	69
Peltophorum pterocarpum	Caesalpiniaceae	12	25	18	3	58
Hypericum japonicum	Hypericaceae	12	29	14	-	55
Knema globularia	Myristicaceae	-	3	32	19	54
Cinnamomum subavenium	Lauraceae	-	6	23	21	50
Canarium parvum	Burseraceae	4	17	17	8	46
Cinnamomum tetragonum	Lauraceae	1	10	20	13	44
Erythrophleum fordii	Caesalpiniaceae	-	10	14	17	41
Vitex trifolia	Verbenaceae	5	18	7	4	34
Paranephelium spirei	Sapindaceae	-	10	14	10	34
Ficus vasculosa	Moraceae	1	8	20	5	34
Acronychia pedunculata	Rutaceae	2	14	16	-	32
Aglaia dasyclada	Meliaceae	2	8	1	19	30
Mellettia lasiopetala	Fagaceae	-	3	18	8	29
Castanopsis annamensis	Fagaceae	1	17	6	2	26
Gironniera subaequalis	Ulmaceae	1	-	-	25	26
Canarium album	Burseraceae	3	10	7	6	26
Aphanamixis grandifolia	Meliaceae	-	2	1	21	24
Garcinia oblongifolia	Clusiaceae	3	3	7	10	23
Vatica odorata	Dipterocarpaceae	1	-	20	1	22
Mischocarpus oppositifolius	Sapindaceae	2	6	10	4	22

Michelia banlanse	Magnoliaceae	1	5	6	9	21
Wrightia pubscens	Apocynaceae	5	9	4	3	21
Amesiodendron chinense	Sapindaceae	-	4	4	13	21
Michelia tonkinensis	Magnoliaceae	11	4	5	-	20

P1: Phase 1; P2: Phase 2; P3: Phase 3; and UD: Undisturbed forest

The regeneration of the *Vernicia montana* (Euphorbiaceae) and *Hypericum japonicum* (Hypericaceae) species was absent in the undisturbed forest; however, they dominated in the successional forests. The abundance of seedlings and saplings was numerous for former species, with a respective 102 and 4 individuals counted in the first and second phases, while the latter species had 12, 29 and 14 stems in the first, second and third phase, respectively. A similar pattern was observed for the regeneration of *Acronychia pedunculata* (Rutaceae) which was rare in the first site (with 2 individuals counted), absent in the undisturbed site, and in abundance in the two remaining sites (12 and 14 stems in the second and third, respectively).

8.4 Family composition of regeneration (seedlings and saplings)

In the course of this study, a total of 31 tree families of seedlings and saplings were recorded in the four forest site (Table 12). Most families (Lauraceae, Burseraceae, and Sapindaceae) were common to all the forest sites. Several families (Hypericaceae and Rutaceae) were recorded in the forest sites of succession, but they were absent from the undisturbed forest. In terms of tree abundance, the family with the greatest number of individuals was Lauraceae with 360 stems, followed by Sapindaceae (247), Myrtaceae (207) and Euphorbiaceae (200). Across all sites, 15 out of 39 families were represented by a single species, and only six had species number greater than five.

Table 12	The family of regeneration collected in the four forest types in Ben En National
	Park, Vietnam.

No.	Family	The abundance of regeneration (n/0.2 ha)						
	Failing	P1	P2	P3	UD	Total		
1	Alangiaceae	61	8	-	4	73		
2	Amaranthaceae	-	1	-	-	1		
3	Anacardiaceae	-	2	2	-	4		
4	Apocynaceae	20	32	26	19	97		

5	Araliaceae	-	1	-	1	2
6	Bignoniaceae	-	2	6	6	14
7	Burseraceae	10	31	28	20	89
8	Caesalpiniaceae	12	36	32	22	102
9	Clusiaceae	8	5	8	15	36
10	Dilleniaceae	1	-	1	-	2
11	Dipterocarpaceae	1	-	20	1	22
12	Ebenaceae	-	-	2	2	4
13	Elaeocarpaceae	1	1	6	3	11
14	Euphorbiaceae	112	28	45	15	200
15	Fabaceae	4	1	1		6
16	Fagaceae	2	23	31	24	80
17	Hypericaceae	12	29	14	-	55
18	Juglandaceae	1	-	-	-	1
19	Lamiaceae	1	-	-	-	1
20	Lauraceae	6	60	189	105	360
21	Loganiaceae	-	1	-	-	1
22	Magnoliaceae	12	9	12	19	52
23	Meliaceae	3	17	22	57	99
24	Mimosaceae	1	8	10	1	20
25	Moraceae	9	18	30	7	64
26	Myristicaceae	-	5	45	21	71
27	Myrtaceae	38	65	60	44	207
28	Oxalidaceae	3	-	4	-	7
29	Phyllanthaceae	2	4	7	2	15
30	Rosaceae	3	1	-	-	4
31	Rubiaceae	-	1	-	-	1
32	Rutaceae	2	14	22	-	38
33	Sapindaceae	2	100	93	52	247
34	Sterculiaceae	3	10	2	2	17
35	Symplocaceae	-	2	5	1	8
36	Theaceae	1	22	101	25	149
37	Tiliaceae	2	8	1	-	11
38	Ulmaceae	21	32	47	52	152
39	Verbenaceae	5	20	13	6	44

P1: Phase 1; P2: Phase 2; P3: Phase 3; and UD: Undisturbed forest

8.5 Regeneration of tree species producing NTFPs

Table 13 indicates total density of regeneration species producing NTFPs collected in four forest sites. Species of *Garcinia oblongifolia; Acronychia pedunculata; Baccaurea sapida; Castanopsis annamensis; Vitex trifolia; Machilus sp.; Machilus bonii; Grewia paniculata; Sterculia lanceolata; Canarium parvum; Canarium album; Vernicia Montana; Paranephelium spirei; Schima superba presented good regeneration (number of individuals \geq 10), while <i>Mallotus paniculatus; Schefflera octophylla; Artocarpus sp.; Vitex quinata; Canarium horridum; Michelia tonkinensis; Phoebe tavoyana; Cinnamomum camphora; Canarium tramdenum; Mangifera minitifolia* showed poor regeneration abilities (individuals of each species \leq 2). *Schima superba* was observed to produce the highest number of medicinal individuals (138) and 106 individuals of *Vernicia Montana* produced flavor.

Scientific name	P 1	P 2	P 3	UD	Total	Uses	Parts used
Mallotus paniculatus	2	-	-	-	2	Medicinal	Leaves
Euodia tepta	-	-	6	-	6	Medicinal	-
Croton tiglium	-	4	-	-	4	Resin	Stem
Rauvolfia verticillata	1	5	-	-	6	Resin	Leaves
Litsea griffithii	-	1	3	1	5	Oil	-
Garcinia oblongifolia	3	3	7	10	23	Spice	Leaves
Acronychia pedunculata	2	14	16	-	32	Medicinal	Leaves
Schefflera octophylla	-	1	-	1	2	Spice	Leaves
Artocarpus tonkinensis	-	2	5	-	7	Resin	Bark
Artocarpus styracifolius	-	-	2	-	2	Resin	Bark
Artocarpus sp.	-	-	1	-	1	Resin	Bark
Baccaurea sapida	2	4	7	2	15	Spice	Fruit
Castanopsis annamensis	1	17	6	2	26	-	Fruit
Castanopsis lecomtei	-	-	1	2	3	Spice	Fruit
Vitex leptobotrys	-	2	6	1	9	-	Stem
Vitex trifolia	5	18	7	4	34	-	Stem
Vitex quinata	-	-	-	1	1	-	Stem
Canthium horridum	-	1	-	-	1	Flavor	Fruit
Michelia tonkinensis	-	-	-	2	2	Spice	Fruit
Machilus sp.	-	2	8	-	10	Flavor	Bark
Phoebe tavoyana	-	1	-	-	1	Flavor	-
Machilus bonii	-	2	2	7	11	Flavor	-
Averrhoa carambola	3	-	4	-	7	Spice	Fruit
Cinnamomum camphora	-	-	1	-	1	Oil and flavor	-
Grewia paniculata	2	8	1	-	11	Spice	-

 Table 13
 Total density of regeneration species producing NTFPs in four forest sites

Cinnamomum ovatum	-	-	-	5	5	Flavor	Leaves and bark
Sterculia lanceolata	-	9	1	-	10	Food	Fruit
Ficus racemosa	4	2	-	-	6	Food	Fruit
Canarium parvum	4	17	17	8	46	Food	Fruit
Canarium tramdenum	1	-	-	-	1	Food	Fruit
Canarium littorale	-	4	2	5	11	Food	Fruit
Canarium album	3	10	7	6	26	Food	Fruit
Vernicia montana	102	4	-	-	106	Flavor	Fruit
Paranephelium spirei	-	10	14	10	34	-	Fruit
Schima wallichii	-	-	-	6	6	Medicinal	Leaves
Schima superba	1	22	96	19	138	Medicinal	Leaves
Mangifera minitifolia	-	-	2	-	2	Food	Fruit

P1: Phase 1; P2: Phase 2; P3: Phase 3; and UD: Undisturbed forest

9 Constraints for biodiversity conservation and use of NTFP resource

Recently, the efforts of biodiversity on ecosystem process have received much attention because of the growing concern that loss of biodiversity may impair ecosystem functioning. Ben En National Park has prohibited the harvesting of non-timber forest products according to special forest management regulations. However, there are several challenges limiting their implementation, as follows:

- 1) Limited species-specific information such as availability, distribution, productivity, and regeneration potentials;
- 2) A main concern for the conservation and sustainability is that there exists unsustainable harvesting practices and habitat loss;
- 3) Threats to NTFPs from deforestation and illegally harvesting;
- 4) Traditional grazing is available in forest areas resulting in the deterioration of the vegetation cover and disappearance of trees.
- 5) Lack of capacity with the communities for the better management of NTFPs, and
- 6) Poor management of natural resources and wood lands leading to the fact that policymakers are unaware of the extent of the uses or the values of NTFPs in these natural forests and the magnitudes of dependence of the rural poor on the resource for food security and income.

10 Recommendations for improving effective forest management of NTFPs and benefit-sharing mechanisms

Based on the present study, a better understanding of conservation status and sustainable use were obtained and some management suggestions consist of:

- A link is needed between research and management procedures adopted by the government, research institutions and relevant conservation organisations. Up-todate information from the threatened areas should be updated and new strategies for conservation should be planned regularly.
- 2. The goal for the management of species diversity and richness should focus on indigenous wildlife species. The objectives of the forest management should be redefined to highlight the important role of biodiversity conservation.
- 3. Site-specific conservation policies are urgently needed, over-harvests or exploits the natural resources of the area (especially floral biodiversity) should be taken care of.
- 4. A study of economically important, vulnerable and endangered species should be a priority project in future efforts.
- 5. More information about biology, resource assessment methods, harvesting strategies, and market value of potential promising species should be addressed.
- 6. Assess sustainable use, sustainable levels of harvesting and the management practices for the conservation of NTFPs species.
- 7. Create public awareness about conservation and sustainable management of NTFPs.
- 8. Provide locals with training to harvest plant resources for use in a sustainable way and provide conservation education to the villagers and in the schools.
- 9. Encourage local people to cultivate NTFPs.

In terms of benefit-sharing mechanisms, the following suggestions should be concerned in the future time:

- It is a fact that the financial outcome can motivate local people to conserve NTFPs plant species, thus an appropriate policy environment and collective cooperation strategies need to be developed that would involve many local people;
- The management of NTFPs must use the local indigenous knowledge, the ecological impacts of NTFPs extraction for collecting, monitoring, and sharing of rights and benefits;
- The capacity building programmes for the local people are very important. The abundance of the species in the forests offers better opportunity for the development of the NTFPs and holds a potential for poverty alleviation;

- 4. A comprehensive NTFP policy is needed to strike a balance between biodiversity conservation and provision of livelihood security to the forest dwellers;
- 5. Prohibiting NTFPs harvest is likely ineffective conservation policy, in order to conserve forest resources and NTFPs species, people living in adjoining villages to the forests should be incorporated into the conservation program, which would prevent the exploitation of these tree species for timber and ensure sustainable production of their valuable non-timber products;
- The research activities should contribute to the development of NTFP species and exploitation systems should be ecologically sustainable and socially and economically attractive for the local communities.

11 Management implications for conservation and more sustainable use of NTFP species

This study has revealed the abundance of woody tree species and ecologically valuable nontimber tree species in the study area. Sustainable management of forest reserves requires holistic approach in which both timber and non-timber tree species are managed in accordance with their ecological attributes. To achieve a balance between conservation and sustainable use of non-timber forest resources, the following activities should be carried out by the park, as follows:

- 1. Identifying currently unprotected sites that are a priority for conservation of biological diversity and ecosystem processes;
- Development and implementation of effective conservation and resource management plans may need legislative reform before managed use of non-timber forest resources provides incentive for conservation as a form of land-use;
- 3. Enhancing the role of local people in inventory, research, monitoring and impact assessment processes, and management;
- Non-timber forest resources uses should be placed into forest management and land use plannings, while silvicultural prescriptions need to be developed that consider and incorporate NTFR;
- Conservation policies and education must be directed to reducing the various disturbance factors identified here;
- 6. Research should be carried out on methods of their sustainable harvest to provide clearer insight on best forest management and conservation strategies;
- 7. Much attention should be undertaken in forest management plans for regeneration and conservation of these ecosystems.

TÀI LIỆU THAM KHẢO

Anonymous (2009). Proposal for Biodiversity conservation for lower-montane ecosystem of Ben En National Park in the Northern Central region. Nhu Thanh Town, Thanh Hoa Province, Ben En National Park Management Board: 33 pp. (in Vietnamese).

Anonymous (2011). Strategy of natural conservation at Ben En National Park, period 2011-2020. (in Vietnamese). Thanh Hoa, Vietnam, Ben En National Park Management Board: 32 pp.

Olajide, O., E. Udo, et al. (2008). "Diversity and population of timber tree species producing valuable non-timber products in two tropical rainforests in Cross River State, Nigeria." <u>Journal of Agriculture and Social Sciences (Pakistan)</u>.

Ros-Tonen, M. A. and K. F. Wiersum (2005). "The scope for improving rural livelihoods through non-timber forest products: an evolving research agenda." <u>Forests, Trees and Livelihoods</u> **15**(2): 129-148.

Tordoff, A. and M. E. Grindley (2000). Vegetation in Ben En National Park. A Biodiversity Survey pp. 4-10. Frontier Vietnam Environmental Research Report 18., Society for Environmental Exploration, UK and Institute of Ecology and Biological Resources. : 11-17.

Appendices

No	Latin name	Abundance (n/ha)	Dominance (m2/ha)	Frequency (%)	IVI (%)	
1	Vernicia montana	258	5.261	100	86.83	
2	Alangium chinense	169	2.440	100	51.46	
3	Hypericum japonicum	24	0.474	55	11.69	
4	Gironniera cuspidata	15	0.426	50	9.65	
5	Sapium discolor	14	0.373	40	8.27	
6	Ficus racemosa	9	0.433	25	6.84	
7	Trema orientalis	9	0.268	40	6.71	
8	Wrightia laevis	17	0.125	35	6.24	
9	Ficus annulata	10	0.114	45	6.00	
10	Cinamomum blansae	7	0.254	35	5.92	
11	Cratoxylum polyanthum	14	0.079	40	5.85	
12	Pterospermum hetrophyllum	11	0.168	35	5.76	
13	Syzygium chanlos	12	0.064	40	5.46	
14	Mischocarpus oppositifolius	11	0.113	25	4.49	
15	Michelia tonkinensis	8	0.063	35	4.49	
16	Peltophorum pterocarpum	9	0.089	30	4.43	
17	Vitex trifolia	11	0.139	20	4.29	
18	Canarium album	7	0.030	35	4.08	
19	Garcinia oblongifolia	6	0.052	30	3.72	
20	Cinnamomum tetragonum	7	0.064	25	3.54	
21	Endospermum sinensis	8	0.123	15	3.34	
22	Averrhoa carambola	7	0.065	20	3.14	
23	Canarium parvum Cinnamomum	7	0.043	20	2.95	
24	parthenoxylon	4	0.084	20	2.88	
25	Syzygium zeylanicum	5	0.035	20	2.61	
26	Elaeocarpus griffithii	4	0.044	20	2.55	
27	Aphanamixis grandifolia	4	0.030	20	2.43	
28	Dillenia scabrella	2	0.141	10	2.25	
29	Grewia paniculata	4	0.040	15	2.11	
30	Alstonia scholaris	3	0.035	15	1.93	
31	Knema pierrei	3	0.033	15	1.91	
32	Prunus arborea	3	0.032	15	1.90	
33	Canarium tramdenum	2	0.051	10	1.51	
34	Mallotus paniculatus	5	0.047	5	1.48	
35	Mallotus metcalfianus	2	0.035	10	1.38	
36	Knema globularia	2	0.023	10	1.28	
37	Symplocos lauria	2	0.019	10	1.25	
38	Gmelina arborea	2	0.016	10	1.22	
39	Lagerstroemia tomentosa	2	0.016	10	1.22	

App. 1 Important value index of Species calculated in the Phase 1

Total		726	12.21		
58	Mytilaria laosensis	1	0.003	5	0.57
57	Litsea verticillata	1	0.004	5	0.58
56	Bischofia javanica	1	0.005	5	0.59
55	Rauvolfia verticillata	1	0.006	5	0.59
54	Ormosia pinnata	1	0.006	5	0.60
53	Aglaia perviridis	1	0.006	5	0.60
52	Vatica odorata	1	0.007	5	0.61
51	Spondias lakoensis	1	0.012	5	0.65
50	Machilus bonii	1	0.013	5	0.66
49	Uraria crinite	1	0.015	5	0.67
48	Michelia banlanse	1	0.015	5	0.67
47	Aporosa dioica	1	0.022	5	0.72
46	Antidesma acidum	2	0.010	5	0.77
45	Aglaia spectabilis	2	0.015	5	0.81
44	Ficus curtipes	3	0.034	5	1.10
43	Castanopsis annamensis	2	0.010	10	1.18
42	Wrightia pubscens	2	0.011	10	1.19
41	Fernandoa brilletii	2	0.012	10	1.19
40	Acronychia pedunculata	2	0.062	5	1.20

App. 2 Important value index of Species calculated in the Phase 2

No	Latin name	Abundance (n/ha)	Dominance (m2/ha)	Frequency (%)	IVI (%)
1	Hypericum japonicum	340	3.73	100	68.97
2	Alangium chinense	99	1.61	90	27.73
3	Vernicia montana	90	1.48	95	26.20
4	Gironniera cuspidate	27	0.73	55	11.59
5	Sapium discolor	23	0.81	50	11.41
6	Peltophorum pterocarpum	29	0.52	45	9.70
7	Croton tiglium	23	0.33	55	8.35
8	Aglaia dasyclada	16	0.41	50	7.88
9	Canarium parvum	17	0.26	60	7.58
10	Wrightia laevis	19	0.35	45	7.46
11	Erythrophleum fordii	10	0.43	20	5.38
12	Ficus vasculosa	15	0.30	25	5.33
13	Canarium littorale	10	0.23	40	5.31
14	Ficus annulata	14	0.18	35	5.03
15	Pometia pinnata	13	0.19	35	5.01
16	Vitex trifolia	12	0.15	40	4.96
17	Canarium album	11	0.19	25	4.15
18	Mischocarpus oppositifolius	12	0.12	30	4.10
19	Endospermum sinensis	7	0.15	30	3.79
20	Amesiodendron chinense	7	0.09	30	3.35
21	Pterospermum hetrophyllum	8	0.08	25	3.09
22	Trema orientalis	5	0.19	15	2.83
23	Wrightia pubscens	7	0.06	25	2.80
24	Markhamia caudafelina	7	0.05	25	2.78
25	Grewia paniculat	8	0.08	20	2.74
26	Gironniera mollissima	6	0.15	15	2.67
27	Schima superba	6	0.07	20	2.44
28	Canarium album	4	0.06	20	2.14
29	Ficus racemosa	3	0.07	15	1.81
30	Acronychia pedunculata	3	0.06	15	1.72
31	Elaeocarpus griffithii	4	0.04	15	1.71
32	Cinnamomum iners	4	0.03	15	1.64
33	Knema globularia	3	0.04	15	1.59
34	Paranephelium spirei	3	0.04	15	1.57
35	Phoebe angustifolia	5	0.05	10	1.55
36	Cinnamomum camphora	3	0.03	15	1.52
37	Cinnamomum tetragonum	2	0.08	10	1.42
38	Castanopsis indica	2	0.08	10	1.41
39	Mangifera minitifolia	4	0.04	10	1.34
40	Sterculia lanceolata	3	0.05	10	1.33
41	Prunus arborea	4	0.03	10	1.32
42	Machilus bonii	2	0.04	10	1.15

Tot		937	14.28		
80	Polyalthia laui	1	0.00	5	0.4
79	Michelia tonkinensis	1	0.00	5	0.4
78	Canthium horridum	1	0.00	5	0.4
77	Vitex quinata	1	0.00	5	0.4
76	Camellia caudate	1	0.00	5	0.4
75	Rauvolfia verticillata	1	0.00	5	0.4
74	Baccaurea sapida	1	0.00	5	0.4
73	Sterculia tonkinensis	1	0.01	5	0.4
 72	Garcinia oblongifolia	1	0.01	5	0.4
71	Averrhoa carambola	1	0.01	5	0.
70	Litsea griffithii	1	0.01	5	0.
69	Syzygium sp.	1	0.01	5	0.
68	Archidendron clypearia	1	0.01	5	0.
67	Diospyros apiculata	1	0.01	5	0.
66	Michelia banlanse	1	0.01	5	0.
65	Cryptocarya annanmensis	1	0.01	5	0.
64	Cinnamomum mairei	1	0.01	5	0.
63	Uraria crinite	1	0.01	5	0.
62	Vitex leptobotrys	1	0.01	5	0.
61	Mytilaria laosensis	1	0.02	5	0.
60	Syzygium levinei	1	0.02	5	0.
59	Alstonia scholaris	1	0.02	5	0.
58	Michelia mediocris	1	0.02	5	0.
57	Cinnamomum subavenium	1	0.02	5	0.
56	Grewia paniculata	1	0.02	5	0.
55	Castanopsis hystrix	1	0.03	5	0.
54	Castanopsis annamensis	1	0.03	5	0.
53	Antidesma acidum	2	0.02	5	0.
52	Mallotus decipiens	2	0.03	5	0.
51	Cryptocarya sp.	1	0.05	5	0.
4 3 50	Artocarpus sp.	1	0.06	5	0.
49	Artocarpus tonkinensis	2	0.01	10	0.
48	Mellettia lasiopetala	2	0.01	10	0.
40 47	Symplocos lauria	2	0.02	10	0.
45 46	Syzygium zeylanicum Vatica odorata	2	0.03	10	1.
44 45		2	0.03	10	ı. 1.
43	Canarium tramdenum Neocinnamomum lecomtei	2	0.03	10	1.

No	Latin name	Abundance (n/ha)	Dominance (m2/ha)	Frequency (%)	IVI (%)	
1	Cinnamomum tetragonum	72	2.25	80	19.47	
2	Pometia pinnata	46	1.54	65	13.40	
3	Gironniera cuspidata	42	1.44	70	12.80	
4	Ficus vasculosa	44	0.82	85	11.26	
5	Gironniera mollissima	34	1.15	70	10.86	
6	Gironniera subaequalis	26	1.49	55	10.67	
7	Schima superba	48	0.75	65	10.60	
8	Alangium chinense	49	1.04	30	10.39	
9	Sapium discolor	22	1.25	70	9.95	
10	Mellettia lasiopetala	29	0.80	55	8.36	
11	Canarium parvum	29	0.35	90	8.11	
12	Peltophorum pterocarpum	22	0.96	40	7.64	
13	Endospermum sinensis	17	0.89	40	6.84	
14	Cinnamomum parthenoxylon	24	0.46	55	6.57	
15	Vernicia montana	28	0.60	30	6.50	
16	Canarium album	23	0.32	50	5.71	
17	Pterocarya tonkinensis	13	0.67	40	5.58	
18	Cinnamomum subavenium	13	0.48	50	5.25	
19	Erythrophleum fordii	16	0.38	50	5.18	
20	Machilus bonii	14	0.28	45	4.38	
21	Wrightia laevis	12	0.33	40	4.17	
22	Syzygium chanlos	10	0.42	35	4.09	
23	Michelia banlanse	13	0.16	45	3.82	
24	Knema globularia	11	0.16	45	3.64	
25	Amesiodendron chinense	9	0.23	40	3.45	
26	Michelia tonkinensis	7	0.36	30	3.35	
27	Cinnamomum mairei	10	0.27	25	3.10	
28	Vitex trifolia	8	0.21	30	2.88	
29	Cinnamomum subavenium	9	0.12	35	2.85	
30	Canarium littorale	9	0.17	30	2.83	
31	Markhamia stipulata	8	0.17	30	2.71	
32	Mytilaria laosensis	9	0.14	30	2.71	
33	Mischocarpus oppositifolius	8	0.31	15	2.66	
34	Schefflera octophylla	4	0.42	15	2.65	
35	Firmiana simplex	6	0.24	25	2.56	
36	Aglaia dasyclada	8	0.13	30	2.56	
37	Syzygium zeylanicum	8	0.06	35	2.53	
38	Syzygium levinei	7	0.10	30	2.35	
39	Cryptocarya annanmensis	10	0.11	20	2.30	
40	Quercus platycalyx	5	0.18	25	2.23	
41	Garcinia oblongifolia	6	0.07	30	2.14	
42	Dipterocarpus retusus	1	0.46	5	2.06	
43	Castanopsis indica	4	0.26	15	2.04	
44	Elaeocarpus griffithii	5	0.16	20	1.95	
45	Vitex leptobotrys	3	0.23	15	1.83	
46	Hypericum japonicum	6	0.10	20	1.82	
47	Dosoxylum acutangulum	4	0.13	20	1.74	
48	Paranephelium spirei	4	0.09	20	1.58	
49	Sterculia lanceolata	5	0.09	15	1.48	

App. 3 Important value index of Species calculated in the Phase 3

50	Archidendron clypearia	4	0.05	20	1.44
51	Grewia paniculata	5	0.07	15	1.41
52	Pterospermum hetrophyllum	5	0.07	15	1.40
53	Aphanamixis silvestris	4	0.09	15	1.40
54	Rhus rhetsoides	4	0.09	15	1.38
55	Knema pierrei	4	0.04	20	1.38
56	Castanopsis annamensis	4	0.08	15	1.34
57	Croton tiglium	5	0.10	10	1.33
58	Actinodaphne obovata	4	0.04	15	1.18
59	Aglaia roxburghiana	4	0.03	15	1.14
60	Sterculia tonkinensis	4	0.06	10	1.06
61	Syzygium parviflorum	3	0.03	15	1.05
62	Cinnamomum burmannii	1	0.19	5	1.04
63	Cinamomum blansae	2	0.11	10	1.04
64	Ficus racemosa	3	0.03	15	1.04
65	Cinnamomum ovatum	2	0.08	10	0.93
66	Vitex quinata	3	0.05	10	0.91
67	Prunus arborea	2	0.07	10	0.88
68	Markhamia caudafelina	3	0.03	10	0.83
69	Sinosideroxylon racemosum	1	0.03	5	0.82
70	Lithocarpus areca	3	0.02	10	0.82
71	Paramechelia braianensis	2	0.02	10	0.80
72	Aphanamixis grandifolia	2	0.03	10	0.00
72	Balakata baccata	1	0.04	5	0.78
73 74	Michelia mediocris	2	0.03	5 10	0.75
74 75		2	0.03	10	0.74
	Uraria crinita	2	0.02		
76 77	Aporosa dioica			10	0.70
77	Trema orientalis	1	0.10	5	0.68
78	Ficus annulata	2	0.01	10	0.66
79	Castanopsis hystrix	2	0.01	10	0.66
80	Cratoxylum polyanthum	2	0.01	10	0.66
81	Trema politoria	1	0.06	5	0.55
82	Madhuca pasquieri	1	0.06	5	0.54
83	Camellia caudata	2	0.03	5	0.54
84	Gleditsia australis	1	0.05	5	0.51
85	Artocarpus tonkinensis	1	0.05	5	0.49
86	Garcinia multiflora	1	0.04	5	0.47
87	Symplocos cochinchinensis	1	0.03	5	0.41
88	Averrhoa carambola	1	0.02	5	0.40
89	Castanopsis lecomtei	1	0.02	5	0.40
90	Cinnamomum burmannii	1	0.02	5	0.40
91	Cinnamomum camphora	1	0.02	5	0.39
92	Rhus succedanea	1	0.02	5	0.39
93	Artocarpus styracifolius	1	0.02	5	0.38
94	Lindera racemosa	1	0.02	5	0.37
95	Ficus curtipes	1	0.01	5	0.37
96	Lithocarpus elegans	1	0.01	5	0.36
97	Phoebe tavoyana	1	0.01	5	0.36
98	Symplocos lauria	1	0.01	5	0.36
99	Litsea griffithii	1	0.01	5	0.36
100	Aidia oxyodonta	1	0.01	5	0.36
101	Archidendron lucidum	1	0.01	5	0.36
102	Cinnamomum bejolghota	1	0.01	5	0.35
103	Rauvolfia verticillata	1	0.01	5	0.35

	Total	944	26.29		
115	Aglaia perviridis	1	0.00	5	0.32
114	Baccaurea sapida	1	0.00	5	0.3
113	Antiaris toxicaria	1	0.00	5	0.3
112	Polyalthia laui	1	0.00	5	0.3
111	Syzygium brachiatum	1	0.01	5	0.3
110	Diospyros hirsuta	1	0.01	5	0.3
109	llex rotunda	1	0.01	5	0.3
108	Cryptocarya lenticellata	1	0.01	5	0.3
107	Machilus sp.	1	0.01	5	0.3
106	Ormosia pinnata	1	0.01	5	0.3
105	Lithocarpus bacgiangnenis	1	0.01	5	0.3
104	Phoebe paniculata	1	0.01	5	0.3

IVI No Latin name Abundance Dominance Frequency (n/ha) (m2/ha) (%) (%) Pometia pinnata 31 2.90 80 17.26 1 2 22 2.93 50 13.99 Mischocarpus oppositifolius 3 Gironniera subaequalis 30 1.42 80 13.49 Erythrophleum fordii 4 18 2.02 55 11.30 5 Cinnamomum subavenium 18 1.85 60 11.14 Cinnamomum tetragonum 22 6 1.48 45 10.22 7 Gironniera cuspidata 21 0.67 60 8.89 Schima superba 21 0.50 60 8.47 8 Mellettia lasiopetala 22 9 0.70 45 8.34 Wrightia laevis 10 17 0.57 60 7.87 Syzygium chanlos 18 45 7.68 11 0.75 12 Cinnamomum mairei 16 0.64 55 7.57 13 Castanopsis hystrix 11 1.19 35 6.86 Sinosideroxylon racemosum 8 40 14 1.08 6.27 7 15 Aglaia silvestric 1.22 30 5.88 16 Aglaia dasyclada 6 1.37 25 5.79 5 20 17 Castanopsis indica 1.38 5.37 18 Canarium littorale 4 1.42 20 5.28 19 Cinnamomum parthenoxylon 10 0.32 45 5.09 7 20 Canarium parvum 0.79 30 4.85 7 21 Michelia mediocris 0.71 25 4.39 22 Dipterocarpus retusus 5 0.86 25 4.37 23 Castanopsis annamensis 4 1.03 20 4.33 24 6 0.54 25 3.80 Aphanamixis grandifolia 6 0.36 30 3.62 25 Michelia banlanse 6 0.44 25 3.57 26 Peltophorum tonkinensis 27 7 0.28 25 3.36 Garcinia multiflora 2 0.94 3.20 28 Dosoxylum acutangulum 10 5 20 3.20 29 Dysoxylum cauliflorum 0.48 3 3.00 30 Paranephelium spirei 0.67 15 3 2.99 Lagerstroemia tomentosa 0.78 10 31 6 30 2.97 32 Knema globularia 0.09 7 25 2.91 33 Ficus vasculosa 0.09 34 Amesiodendron chinense 5 0.31 20 2.77 5 25 2.55 35 Ficus annulata 0.11 4 36 Knema pierrei 0.27 20 2.49 5 37 20 2.47 Lithocarpus areca 0.18 1 5 38 Sapium discolor 0.79 2.37 39 Vitex trifolia 3 0.28 15 2.05 4 40 0.09 20 2.04 Grewia paniculata 3 41 Madhuca pasquieri 0.25 15 1.99

App. 4 Important value index of Species calculated in the undisturbed forest

3

0.24

15

1.95

42

Castanopsis lecomtei

43	Dracontomelon duperreanum	1	0.57	5	1.83
44	Quercus platycalyx	4	0.09	15	1.78
45	Schefflera octophylla	2	0.28	10	1.61
46	Markhamia stipulata	3	0.09	15	1.60
47	Canarium album	2	0.28	10	1.60
48	Machilus bonii	3	0.08	15	1.58
49	Baccaurea sapida	3	0.07	15	1.54
50	Cinnamomum ovatum	3	0.07	15	1.54
51	Syzygium zeylanicum	3	0.06	15	1.51
52	Aglaia perviridis	2	0.21	10	1.44
53	Bischofia javanica	2	0.32	5	1.43
54	Firmiana simplex	2	0.19	10	1.37
55	Cinnamomum iners	2	0.18	10	1.35
56	Elaeocarpus griffithii	2	0.15	10	1.28
57	Machilus bonii	2	0.13	10	1.24
58	Amaranthus tricolor	2	0.12	10	1.21
59	Phoebe paniculata	2	0.11	10	1.19
60	Spondias axillaris	2	0.11	10	1.19
61	Uraria crinita	2	0.10	10	1.17
62	Cinamomum blansae	1	0.28	5	1.14
63	Prunus arborea	2	0.07	10	1.10
64	Michelia tonkinensis	1	0.26	5	1.08
65	Fernandoa brilletii	2	0.07	10	1.08
66	Melientha suavis	2	0.06	10	1.06
67	Cinnamomum subavenium	2	0.05	10	1.04
68	Syzygium levinei	2	0.05	10	1.04
69	Symplocos lauria	2	0.04	10	1.02
70	Vatica odorata	1	0.23	5	1.01
71	Symplocos atriolivacea	2	0.04	10	1.01
72	Mytilaria laosensis	2	0.04	10	1.01
73	Alangium chinense	2	0.03	10	1.00
74	Aphanamixis polystachya	1	0.20	5	0.95
75	Pterospermum hetrophyllum	1	0.18	5	0.89
76	Quercus platycalyx	1	0.16	5	0.84
77	Lithocarpus bacgiangnenis	1	0.12	5	0.76
78	Cryptocarya sp	1	0.10	5	0.69
79	Averrhoa carambola	1	0.09	5	0.67
80	Spondias lakoensis	1	0.08	5	0.65
81	Cinnamomum impressimeurium	1	0.08	5	0.65
82	Artocarpus tonkinensis	1	0.07	5	0.64
83	Ficus curtipes	1	0.07	5	0.63
84	Michelia tonkinensis	1	0.07	5	0.63
85	Diospyros apiculata	1	0.07	5	0.62
86	Ficus altissima	1	0.06	5	0.62
87	Archidendron clypearia	1	0.06	5	0.62
88	Ficus racemosa	1	0.06	5	0.62

89	Syzygium tonkinensis	1	0.06	5	0.62
90	Diospyros montana	1	0.06	5	0.61
91	Mangifera minitifolia	1	0.06	5	0.61
92	Dillenia heterosepala	1	0.04	5	0.55
93	Manglietia dandyi	1	0.04	5	0.55
94	Paramechelia braianensis	1	0.03	5	0.54
95	Dillenia scabrella	1	0.03	5	0.54
96	Wrightia pubscens	1	0.03	5	0.53
97	Litsea griffithii	1	0.03	5	0.53
98	Chrysophyllum cainito	1	0.03	5	0.52
99	Phoebe angustifolia	1	0.02	5	0.52
100	Vitex leptobotrys	1	0.02	5	0.51
101	Cratoxylum polyanthum	1	0.02	5	0.51
102	Garcinia oblongifolia	1	0.02	5	0.50
103	Aglaia spectabilis	1	0.02	5	0.50
104	Diospyros hirsuta	1	0.01	5	0.50
105	Cryptocarya annanmensis	1	0.01	5	0.49
106	Aglaia roxburghiana	1	0.01	5	0.49
107	Ormosia pinnata	1	0.01	5	0.49
108	Gironniera mollissima	1	0.01	5	0.48
109	Amaranthus spinosus	1	0.01	5	0.47
110	Schima wallichii	1	0.00	5	0.47
	Total	516	41.46		

App. 5 Tree species of regeneration collected in the four forest types in Ben En National Park, Vietnam

No	Scientific name	Family	Phase	Phase	Phase 3	Undisturbed forest	Total
		Family	1	2 80	3 65		Total 170
1	Pometia pinnata	Sapindaceae	1	80 22	65 96	25 19	138
2 3	Schima superba	Theaceae	1	22 17	96 88		130
	Cinnamomum parthenoxylon Vernicia montana	Lauraceae	3		00	26	106
4		Euphorbiaceae	102 15	4	24	27	
5	Gironniera cuspidata	Ulmaceae	31	28 32	31	27 23	101 95
6 7	Syzygium chanlos	Myrtaceae			9		
7	Syzygium zeylanicum	Myrtaceae	5	22	37	18	82 72
8	Alangium chinense	Alangiaceae	61	8	22	4	73 70
9	Wrightia laevis	Apocynaceae	14	18	22 44	16	
10	Antidesma acidum	Euphorbiaceae	2	11		12	69
11	Peltophorum pterocarpum	Caesalpiniaceae	12	25	18	3	58 55
12	Hypericum japonicum	Hypericaceae	12	29	14	10	55
13	Knema globularia	Myristicaceae		3	32	19	54
14	Cinnamomum subavenium	Lauraceae		6	23	21	50
15	Canarium parvum	Burseraceae	4	17	17	8	46
16	Cinnamomum tetragonum	Lauraceae	1	10	20	13	44
17	Erythrophleum fordii	Caesalpiniaceae	_	10	14	17	41
18	Vitex trifolia	Verbenaceae	5	18	7	4	34
19	Paranephelium spirei	Sapindaceae		10	14	10	34
20	Ficus vasculosa	Moraceae	1	8	20	5	34
21	Acronychia pedunculata	Rutaceae	2	14	16		32
22	Aglaia dasyclada	Meliaceae -	2	8	1	19	30
23	Mellettia lasiopetala	Fagaceae		3	18	8	29
24	Castanopsis annamensis	Fagaceae	1	17	6	2	26
25	Gironniera subaequalis	Ulmaceae	1			25	26
26	Canarium album	Burseraceae	3	10	7	6	26
27	Aphanamixis grandifolia	Meliaceae		2	1	21	24
28	Garcinia oblongifolia	Clusiaceae	3	3	7	10	23
29	Vatica odorata	Dipterocarpaceae	1		20	1	22
30	Mischocarpus oppositifolius	Sapindaceae	2	6	10	4	22
31	Michelia banlanse	Magnoliaceae	1	5	6	9	21
32	Wrightia pubscens	Apocynaceae	5	9	4	3	21
33	Amesiodendron chinense	Sapindaceae		4	4	13	21
34	Michelia tonkinensis	Magnoliaceae	11	4	5		20
35	Gironniera mollissima	Ulmaceae		3	16		19
36	Machilus bonii	Lauraceae		3	6	9	18
37	Knema pierrei	Myristicaceae		2	13	2	17
38	Archidendron clypearia	Mimosaceae	1	8	6	1	16
39	Baccaurea sapida	Phyllanthaceae	2	4	7	2	15
40	Actinodaphne obovata	Lauraceae			10	4	14
41	Dysoxylum cauliflorum	Meliaceae		1	7	5	13

42	Markhamia stipulata	Bignoniaceae		2	5	5	12
43	Elaeocarpus griffithii	Elaeocarpaceae	1	1	6	3	11
44	Castanopsis hystrix	Fagaceae			2	9	11
45	Machilus bonii	Lauraceae		2	2	7	11
46	Grewia paniculata	Tiliaceae	2	8	1		11
47	Canarium littorale	Burseraceae		4	2	5	11
48	Machilus sp.	Lauraceae		2	8		10
49	Cinnamomum mairei	Lauraceae			3	7	10
50	Cinnamomum subavenium	Lauraceae	1	4	5		10
51	Sterculia lanceolata	Sterculiaceae		9	1		10
52	Syzygium levinei	Myrtaceae		2	7	1	10
53	Ficus sp.	Moraceae	3	6			9
54	Vitex leptobotrys	Verbenaceae		2	6	1	9
55	Sapium discolor	Euphorbiaceae	3	6			9
56	Phoebe angustifolia	Lauraceae		4	4	1	9
57	Aglaia silvestric	Meliaceae		4	1	3	8
58	Aglaia spectabilis	Meliaceae	1	1		6	8
59	Artocarpus tonkinensis	Moraceae		2	5		7
60	Michelia mediocris	Magnoliaceae			1	6	7
61	Averrhoa carambola	Oxalidaceae	3		4		7
62	Pterospermum hetrophyllum	Sterculiaceae	3	1	1	2	7
63	Cratoxylum polyanthum	Clusiaceae	5	2			7
64	Euodia tepta	Rutaceae			6		6
65	Rauvolfia verticillata	Apocynaceae	1	5			6
66	Aphanamixis silvestris	Meliaceae			6		6
67	Trema orientalis	Ulmaceae	5	1			6
68	Neolitsea poilanei	Lauraceae		1		5	6
69	Ficus racemosa	Moraceae	4	2			6
70	Endospermum sinensis	Euphorbiaceae	2	3		1	6
71	Schima wallichii	Theaceae				6	6
72	Litsea griffithii	Lauraceae		1	3	1	5
73	Aglaia perviridis	Meliaceae		1	1	3	5
74	Cryptocarya annanmensis	Lauraceae			5		5
75	Cinnamomum impressimeurium	Lauraceae		4		1	5
76	Cinnamomum ovatum	Lauraceae				5	5
77	Syzygium tonkinensis	Myrtaceae		4		1	5
78	Mytilaria laosensis	Burseraceae	2		2	1	5
79	Syzygium cumini	Myrtaceae		3	2		5
80	Croton tiglium	Euphorbiaceae		4			4
81	Litsea lancifolia	Lauraceae			4		4
82	Symplocos lauria	Symplocaceae		1	2	1	4
83	Uraria crinita	Fabaceae	2	1	1		4
84	Archidendron lucidum	Mimosaceae	-	•	4		4
85	Endiandra hainanensis	Lauraceae			1	3	4
86	Cryptocarya lenticellata	Lauraceae		2	2	Ũ	4
87	Neocinnamomum lecomtei	Lauraceae		—	3	1	4

88	Lithocarpus areca	Fagaceae		1	2	1	4
89	Garcia cowa	Clusiaceae				4	4
90	Prunus arborea	Rosaceae	3	1			4
91	Camellia sinensis	Theaceae			3		3
92	Castanopsis lecomtei	Fagaceae			1	2	3
93	Symplocos atriolivacea	Symplocaceae		1	2		3
94	Aglaia roxburghiana	Meliaceae			3		3
95	Cinnamomum iners	Lauraceae		1		2	3
96	Lithocarpus sp.	Fagaceae			1	2	3
97	Syzygium parviflorum	Myrtaceae		1	2		3
98	Syzygium polyanthum	Myrtaceae			3		3
99	Mallotus paniculatus	Euphorbiaceae	2				2
100	Castanopsis indica	Fagaceae		2			2
101	Schefflera octophylla	Araliaceae		1		1	2
102	Artocarpus styracifolius	Moraceae			2		2
103	Fernandoa brilletii	Bignoniaceae			1	1	2
104	Garcinia multiflora	Clusiaceae			1	1	2
105	Michelia tonkinensis	Magnoliaceae				2	2
106	Paramechelia braianensis	Magnoliaceae				2	2
107	Phoebe platycarpa	Lauraceae		2			2
108	Koilodepas longifolium	Euphorbiaceae				2	2
109	Ormosia pinnata	Fabaceae	2				2
110	Dillenia scabrella	Dilleniaceae	1		1		2
111	Rhus succedanea	Anacardiaceae		2			2
112	Antiaris toxicaria	Moraceae			2		2
113	Diospyros hirsuta	Ebenaceae			2		2
114	Syzygium brachiatum	Myrtaceae	2				2
115	Saraca dives	Caesalpiniaceae		1		1	2
116	Mangifera minitifolia	Anacardiaceae			2		2
117	Mallotus floribundus	Euphorbiaceae	1				1
118	Litsea verticillata	Lauraceae	1				1
119	Beilschmiedia ferruginea	Lauraceae			1		1
120	Artocarpus tonkinensis	Moraceae				1	1
121	Artocarpus sp.	Moraceae			1		1
122	Camellia caudata	Theaceae			1		1
123	Engelhardtia chrysolepsis	Juglandaceae	1				1
124	Diospyros pilosula	Ebenaceae	•			1	1
125	Dosoxylum acutangulum	Meliaceae			1	•	1
126	Ficus annulata	Moraceae			·	1	1
127	Quercus platycalyx	Fagaceae	1				1
128	Lithocarpus pseudosundaicus	Fagaceae			1		1
120	Vitex quinata	Verbenaceae			·	1	1
130	Amaranthus tricolor	Amaranthaceae		1		I	1
130	Symplocos glauca	Symplocaceae		I	1		ו 1
132	Canthium horridum	Rubiaceae		1	I		1
102	Cantinum normuum	ILUDIALEAE		I			I

	Total		359	597	885	526	2367
14	Syzygium cumini	Myrtaceae		1			1
143	Canarium tramdenum	Burseraceae	1				
142	Diospyros montana	Ebenaceae				1	
141	Aporosa dioica	Euphorbiaceae			1		
140	Eurya tonkinensis	Theaceae			1		
139	Chisocheton chinensis	Meliaceae			1		
138	Cassia sp.	Caesalpiniaceae				1	
137	Ficus vasculosa	Moraceae	1				
136	Strychnos angustifolia	Loganiaceae		1			
135	Cinnamomum camphora	Lauraceae			1		
134	Gmelina arborea	Lamiaceae	1				