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Abstract
1.	 The	cost,	usability	and	power	efficiency	of	available	wildlife	monitoring	equipment	
currently	inhibits	full	ground-level	coverage	of	many	natural	systems.	Developments	
over	the	last	decade	in	technology,	open	science,	and	the	sharing	economy	promise	
to	bring	global	access	to	more	versatile	and	more	affordable	monitoring	tools,	to	
improve	coverage	for	conservation	researchers	and	managers.

2.	 Here	we	describe	the	development	and	proof-of-concept	of	a	low-cost,	small-sized	
and	low-energy	acoustic	detector:	“AudioMoth.”	The	device	is	open-source	and	pro-
grammable,	with	diverse	applications	for	recording	animal	calls	or	human	activity	at	
sample	rates	of	up	to	384	kHz.	We	briefly	outline	two	ongoing	real-world	case	stud-
ies	of	large-scale,	long-term	monitoring	for	biodiversity	and	exploitation	of	natural	
resources.	These	studies	demonstrate	the	potential	for	AudioMoth	to	enable	a	sub-
stantial	shift	away	from	passive	continuous	recording	by	individual	devices,	towards	
smart	detection	by	networks	of	devices	flooding	large	and	inaccessible	ecosystems.

3.	 The	case	studies	demonstrate	one	of	the	smart	capabilities	of	AudioMoth,	to	trigger	
event	logging	on	the	basis	of	classification	algorithms	that	identify	specific	acoustic	
events.	An	algorithm	to	trigger	recordings	of	the	New	Forest	cicada	(Cicadetta mon-
tana)	demonstrates	the	potential	for	AudioMoth	to	vastly	improve	the	spatial	and	
temporal	coverage	of	surveys	for	the	presence	of	cryptic	animals.	An	algorithm	for	
logging	gunshot	events	has	potential	to	identify	a	shotgun	blast	in	tropical	rainforest	
at	distances	of	up	to	500	m,	extending	to	1	km	with	continuous	recording.

4.	 AudioMoth	is	more	energy	efficient	than	currently	available	passive	acoustic	moni-
toring	devices,	giving	it	considerably	greater	portability	and	longevity	in	the	field	
with	smaller	batteries.	At	a	build	cost	of	∼US$43	per	unit,	AudioMoth	has	potential	
for	varied	applications	in	large-scale,	long-term	acoustic	surveys.	With	continuing	
developments	 in	 smart,	 energy-efficient	 algorithms	 and	 diminishing	 component	
costs,	we	are	approaching	the	milestone	of	local	communities	being	able	to	afford	
to	remotely	monitor	their	own	natural	resources.
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1  | INTRODUCTION

Emerging	 technologies	 for	 remote	 monitoring	 and	 species	 identifi-
cation	 bring	 the	 promise	 of	more	 affordable	 and	 versatile	methods	
of	sampling	which	are	predicted	to	drive	future	conservation	efforts	
(Pimm	 et	al.,	 2015).	 Current	 methods	 often	 require	 expensive	 and	
complex	 equipment	 for	 aerial	 imagery	 (Morgan,	 Gergel,	 &	 Coops,	
2010),	acoustic	sensing	(Merchant	et	al.,	2015),	bio-telemetry	(Cooke	
et	al.,	2004),	and	GPS	tracking	(Kays,	Crofoot,	Jetz,	&	Wikelski,	2015).	
The	 technical	 know-how	 and	 infrastructure	 needed	 to	 implement	
these	devices	in	large-scale	environmental	monitoring	often	requires	
a	total	investment	beyond	the	budgets	assigned	to	conservation	proj-
ects	(James,	Green,	&	Paine,	1999).	This	cost	issue	is	being	addressed	
with	 an	 increasingly	 free	 availability	 of	 online	 data	 sources	 such	 as	
satellite	 images	 (Kalyvas,	 Kokkos,	 &	 Tzouramanis,	 2017).	 However,	
such	databases	cannot	capture	cryptic	biodiversity	and	exploitation.	
For	example,	events	which	are	hidden	by	tree	cover,	or	those	that	are	
too	fine-scale	 for	 image	resolution,	 remain	unaccounted	for	without	
ground-level	monitoring	(Peres,	Barlow,	&	Laurance,	2006).

Full	ground-level	monitoring	demands	many	surveyors	or	devices	
to	cover	an	ecosystem	effectively.	Some	contemporary	sampling	meth-
ods	 achieve	 coverage	with	 semi-automated	 monitoring	 technology,	
for	example	camera	traps	triggered	by	infra-red	sensors.	Much	of	the	
methodology	used	in	acoustic	monitoring	lags	behind	this	trend,	tend-
ing	to	feed	large	quantities	of	captured	data	through	detection	soft-
ware	after	deployment	 (Mac	Aodha	et	al.,	2017).	Despite	 the	heavy	
demand	on	memory	storage,	passive	acoustic	monitoring	 (PAM)	has	
proved	useful	for	estimating	ground-level	biodiversity	abundance	and	
occurrence,	particularly	of	smaller	and	more	cryptic	species	(Newson,	
Bas,	Murray,	&	Gillings,	2017),	and	it	 is	often	employed	for	analyses	
of	soundscapes	(Towsey	et	al.,	2014).	It	has	also	been	shown	to	have	
potential	 for	 monitoring	 exploitation	 of	 natural	 resources	 (Astaras,	
Linder,	Wrege,	Orume,	&	Macdonald,	2017).	However,	PAM	devices	
used	 for	 long-term	monitoring	 are	 limited	 by	 their	 size	 and	weight	
due	to	their	high	power	consumption	(Wrege,	Rowland,	Keen,	&	Shiu,	
2017).	Moreover,	the	budget	needed	to	purchase	multiple	devices	and	
then	process	the	captured	data	makes	them	impractical	for	many	re-
search	studies	or	large-scale	conservation	deployments.

In	 recent	 years,	 researchers	 have	 started	 to	 look	 beyond	 com-
mercially	available	options	to	field	devices	designed	and	built	in	part-
nership	with	engineers	(Kwok,	2017).	Research	studies	have	reduced	
the	cost	of	acoustic	monitoring	by	re-purposing	existing	technologies	
(Gross,	2014),	or	implementing	devices	based	on	open-source	modular	
computers	with	external	sensors	of	fit-for-purpose	quality.	Recent	ex-
amples	include	PAM	devices	built	around	the	Raspberry	Pi	computer	
(Caldas-Morgan,	 Alvarez-Rosario,	 &	 Padovese,	 2015;	 Sankupellay	
et	al.,	2016;	wa	Maina,	Muchiri,	&	Njoroge,	2016)	and	Arduino	com-
puter	(Razali	et	al.,	2015;	Shafiril,	Yusoff,	&	Yusoff,	2016).	For	example,	
the	Solo	acoustic	monitoring	platform	 is	based	on	 the	Raspberry	Pi	
and	 an	 external	microphone	 (Whytock	&	Christie,	 2017),	 and	 costs	
just	under	∼US$100.	Devices	such	as	Solo	are	often	chosen	for	their	
computing	power,	 customisation	ability	 and	programming	 simplicity,	
using	 high-level	 programming	 languages,	 such	 as	 Python.	 Despite	

these	 advantages,	 devices	 based	 on	 modular	 computers	 present	
drawbacks	 for	 large-scale	 deployments.	 They	 demand	 considerable	
investment	in	time	for	setting	up	and	configuring	each	device,	involv-
ing	hobbyist	electronics	and	software	development	skills.	The	devices	
based	 on	 the	 Raspberry	 Pi	 have	 inefficient	 power	 optimisation	 and	
consequently	require	large	batteries	to	sustain	power	over	long	peri-
ods.	Solo	for	example,	uses	a	12	V	car	battery	to	compensate	for	its	
low	power	efficiency	 in	 long-term	deployments.	As	with	commercial	
PAM	devices,	the	need	for	larger	battery	capacity	often	makes	mon-
itoring	tools	based	on	modular	computers	too	bulky	for	field	deploy-
ments	in	remote	areas	where	sensors	must	be	transported	manually.	
New	developments	in	lightweight	commercial	detectors	are	increasing	
the	portability	and	usability	of	acoustic	devices,	such	as	the	Peersonic	
RPA3	bat	 recorder	 costing	∼US$280	 (Peersonic	 pricing	page,	 2017)	
or	the	ARBIMON	recorder,	which	is	based	on	a	smartphone,	costing	
∼US$300	(ARBIMON	pricing	page,	2017).	Despite	substantial	savings	
in	size	and	usability,	these	devices	present	a	high	initial	cost	for	large-
scale	studies	requiring	many	devices	to	cover	an	area.	They	also	pres-
ent	a	lack	of	customisation	compared	to	the	modular	computer-based	
devices.	Publications	on	environmental	acoustics	to	date	overwhelm-
ingly	report	data	capture	using	commercially	available,	battery-pow-
ered,	 PAM	 devices.	Many	 acoustic	 monitoring	 applications	 use	 the	
commercial	Song	Meter	series	from	WildLife	Acoustics,	with	best-in-
class	audio	quality	at	a	unit	cost	of	more	than	US$1000	(Song	Meter	
series	product	page,	2017).

Here	 we	 describe	 the	 development	 and	 proof-of-concept	 of	 a	
smart,	 customisable,	 acoustic	 monitoring	 device	 called	 AudioMoth	
(AudioMoth	 home	 page,	 2017).	 The	 device	 employs	 a	 low-power	
microcontroller	 and	 a	 microelectromechanical	 systems	 (MEMS)	 mi-
crophone	 to	 perform	 on-board	 real-time	 acoustic	 analysis,	 allowing	
relevant	data	to	be	filtered	or	classified	before	storage.	This	smart	ca-
pability	reduces	both	the	storage	requirement	on	the	device	and	the	
post-processing	budget	after	data	collection.	With	less	energy	needed	
to	power	the	device,	 it	can	run	off	smaller	batteries.	The	device	ad-
dresses	the	need	for	a	versatile,	small,	low-cost,	low-power	monitoring	
tool	 for	easy	deployment	 in	 long-term	biodiversity	and	environmen-
tal	 acoustic	monitoring.	AudioMoth	aims	 to	make	a	 substantial	 step	
towards	 the	 future	 of	 acoustic	 technology,	 in	 covering	 large	 areas	
of	 inhospitable	habitats	with	a	network	of	devices	 (Browning,	Gibb,	
Glover-Kapfer,	&	Jones,	2017).

2  | MATERIALS AND METHODS

Here	 we	 describe	 the	 design	 of	 the	 AudioMoth	 hardware	 and	 its	
customisable	 software,	 in	 the	 context	 of	 two	 ongoing	 monitoring	
studies	aiming	to	achieve	large-scale	and	long-term	coverage	with	a	
large	number	of	smart	devices.	The	first	study	tests	for	presence	of	
the	New	Forest	cicada	(Cicadetta montana	Scopoli,	1772),	an	elusive	
species	 last	 sighted	 in	 the	UK	over	22	years	 ago	 (Pinchen	&	Ward,	
2002,	p.	134).	The	second	study	investigates	the	detection	of	gunshot	
events	within	 tropical	 forests	 in	Belize,	Central	America,	 in	 an	 area	
under	pressure	from	poaching.
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2.1 | Design

AudioMoth	is	built	around	an	ARM	Cortex-M4F	microcontroller.	The	
M-series	processors	are	some	of	the	most	energy	efficient	microcon-
troller	 cores	 currently	 available.	The	M4F	core	used	by	AudioMoth	
has	on-board	 floating-point	 signal	processing	 functionality,	 allowing	
efficient	processing	of	acoustic	data	at	high	speeds.	AudioMoth	can	
process	data	at	sample	rates	up	to	384	kHz	in	real-time,	made	possible	
by	an	additional	256-KB	SRAM	chip,	which	increases	the	amount	of	
available	processing	time	at	ultrasonic	frequencies.	AudioMoth	stores	
uncompressed	WAV	 files	 to	microSD	 card,	with	 a	 capacity	 limit	 of	
32	GB.	AudioMoth	can	accommodate	extensions	to	the	board,	such	
as	external	sensors	or	a	wireless	network	unit,	using	a	6-pin	peripheral	
module	interface	(PMOD)	header	that	connects	four	general	purpose	
input/output	pins	to	the	processor.

AudioMoth	can	easily	be	deployed	as	a	scheduled	recorder,	with-
out	any	requirement	to	code	or	to	learn	a	computer	programming	lan-
guage;	however,	to	unlock	the	main	advance	that	the	device	brings,	
users	 are	 encouraged	 to	 customise	 and	 design	 their	 own	 on-board	
software	for	filtering	or	classifying	sounds	as	they	happen.	The	user	
can	modify	and	distribute	AudioMoth's	software	for	specific	applica-
tions	 (AudioMoth's	 documented	 library,	 2017),	 on	 the	open	MIT	 li-
cence	 (Open	MIT	 licence	page,	2017).	Modifications	 to	 the	existing	
code	upload	easily	onto	the	device	without	additional	development	
boards,	 requiring	 just	 a	microUSB	 cable	 and	 a	 paper	 clip	 to	 switch	
the	device	into	USB	programming	mode.	Having	the	ability	to	choose	
what	 to	 record	 introduces	 several	 benefits	 over	 acoustic	 method-
ologies	 that	make	use	of	 continuously	 recording	devices,	 especially	
in	 large	 scale	and	 long-term	deployments.	For	example,	AudioMoth	
can	be	programmed	to	filter	relevant	sounds	such	that	only	those	of	
interest	are	saved,	thus	reducing	post-processing	time,	power	usage	
and	data	storage	requirements.	In	conjunction	with	its	low	power	con-
sumption	while	 listening,	 and	 its	 full-spectrum	 frequency	 response,	
AudioMoth	creates	a	unique	opportunity	for	users	to	design	specific	
classification	algorithms	for	individual	projects.	In	order	to	realise	its	
performance	capabilities,	however,	AudioMoth	employs	the	low-level	
programming	 language,	 C,	which	 requires	 a	 greater	 level	 of	 techni-
cal	expertise	than	the	less	efficient	high-level	programming	language,	
Python.	 Despite	 this	 constraint,	AudioMoth	 achieves	 ultra-efficient	
power	 optimisation,	 high-speed	 data	 processing	 and	 a	 wide	 spec-
trum	acoustic	performance	through	the	greater	control	over	low-level	
processes.

AudioMoth	uses	the	Goertzel	filter	for	real-time	classification	algo-
rithms.	This	filter	evaluates	specific	terms	of	a	fast	Fourier	transform	
on	temporarily	buffered	audio	samples	without	the	computational	ex-
pense	of	a	complete	transform.	The	outcome	of	each	algorithm	is	used	
to	trigger	recordings	to	a	microSD	card.

To	apply	a	Goertzel	 filter	 to	an	audio	recording,	 the	samples	are	
split	into	N	windows	of	length	L	given	by:	(s1,1,	…,	s1,j,	…,	s1,L,	…,	sN,1,	…,	
sN,j,	…,	sN,L)	where	1	≤	i	≤	N	and	1	≤	j	≤	L.	The	Goertzel	filter	then	oper-
ates	on	each	window,	generating	a	magnitude	mi:

In	this	expression,	c	is	determined	by	the	central	frequency	of	the	
filter,	f,	and	is	given	by:

where fs	is	the	sample	rate	of	the	recording.	As	the	values	of	f and fs do 
not	change,	the	constant	c	is	precomputed.	The	temporary	sequence	
of	values	y	is	obtained	from	constant	c	and	Hamming	windowed	data	
hj:

In	order	to	prevent	spectral	leakage,	a	Hamming	window	is	applied	
to	the	samples	before	the	Goertzel	filter	in	each	case.	The	window	it-
self	uses	constants	α and β,	and	can	also	be	precomputed	for	a	window	
of	length	L with α	=	0.54	and	β	=	1	−	α	=	0.46:

Goertzel	filters	possess	a	bandwidth	dictated	by	the	sample	rate	
and	 the	 number	 of	 samples	 used	 to	 form	 the	 final	 amplitude.	 The	
equation	 representing	 this	 relationship	 is	 arranged	 such	 that	 the	
length	of	a	filter	window	L	can	be	calculated,	given	a	fixed	bandwidth	
B	and	known	sample	rate	fs:

This	 allows	 the	 bandwidth	 of	 all	 Goertzel	 filters	 to	 be	 set	 to	
cover	 the	 range	 of	 frequencies	 used	 by	 the	 target	vocalisation	 or	
acoustic	event.	We	use	 the	calculated	magnitudes	over	N number 
of	windows	 to	 produce	 a	median.	The	 subsequent	 comparison	 of	
this	median	to	a	calibrated	threshold	value	identifies	whether	or	not	
the	sound	present	in	the	buffered	audio	samples	is	appropriate	for	
recording.

2.2 | Purchase and configuration

Open-source,	custom-designed	and	simply	constructed	hardware	pro-
vides	 cost-effective	 access	 to	 technology	 for	 all.	 Simply	 constructed	
hardware	 can	 be	 bought	 at	 close	 to	 component	 prices,	 because	 the	
number	of	fabrication	steps	can	be	minimised.	To	enable	simple	con-
struction	of	the	device,	its	parts	must	be	readily	available	and	simple	to	
fit	 together.	Accordingly,	 the	circuitry	 for	AudioMoth	uses	online	ac-
cessible	components,	which	all	 fit	on	one	side	of	a	 two-layer	printed	
circuit	board	(PCB).	This	permits	the	acquisition	of	devices	from	a	single	
PCB	 assembler.	 Such	 simply-constructed	 hardware	 can	 be	manufac-
tured	and	delivered	as	an	immediately	working	product,	in	contrast	to	
hardware	with	a	complex	construction	requiring	several	stages	of	fabri-
cation.	Researchers	can	acquire	working	devices	cheaply,	achieving	an	
economy	of	scale	(Wheat,	Wang,	Byrnes,	&	Ranganathan,	2013)	by	join-
ing	 an	online	 collective	purchasing	 group	 (GroupGets	purchase	page,	
2017)	which	bulk	orders	from	a	single	online	web-based	PCB	assembler	
specialising	in	open-source	fabrication	(CircuitHub	product	page,	2017).

Multiple	 devices	 are	 time-consuming	 to	 configure	 on	 commer-
cial	 and	modular	 computer-based	 PAM	 devices,	 requiring	 either	 an	(1)mi=y2

i,L
+ y2

i,L−1
−c × yi,L × yi,L−1.

(2)c=2 cos

(

2πf

fs

)

,

(3)
yi,j= (hj × si,j) + (c × yi,j−1) − yi,j−2.

(4)hj=α−β cos

(

2πj

L−1

)

.

(5)L=4
fs

B
.
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LCD	 screen	 or	 manual	 assembly.	 Experience	 from	 users	 of	 devices	
such	as	Mataki	(Mataki	product	page,	2017)	suggests	that	conserva-
tion	technology	puts	a	premium	on	ease	of	configuration	in	the	field.	
Accordingly,	our	open-source	code	includes	a	cross-platform	config-
uration	 application,	which	 can	 configure	 device	 settings	 in	 the	 field	
using	a	laptop	and	a	USB	cable.	The	configuration	application	is	built	
on	 a	 free,	 open-source	 framework	 called	 Electron	 (Electron,	 2017).	
Together	 with	 the	 configuration	 application,	 AudioMoth's	 default	
firmware	enables	the	device	to	be	used	as	a	scheduled	recorder.	The	
configuration	application	features	adjustable	recording	schedules,	gain	
levels	and	sample	rates.	Using	this	configuration	application	makes	it	
easier	to	configure	large	quantities	of	AudioMoths	as	PAM	devices	for	
multiple	large-scale	applications.

2.3 | Deployment

Portability	 in	 the	 field	 requires	 minimising	 the	 size	 and	 weight	 of	
devices,	 so	 as	 to	maximise	 the	number	 that	 can	be	 carried	on	 foot	
over	 rough	 terrain	 or	 to	 remote	 locations.	 AudioMoth	 has	 small	
0.4	×	0.2	mm2	 (commonly	 referred	 to	as	0402)	 surface-mount	com-
ponents,	 and	 a	 single	 4.72	×	3.76	mm2	 inbuilt	microphone.	 Its	 ultra	
low-powered	embedded	microcontroller	has	internal	operational	am-
plifiers	to	strengthen	the	analog	microphone	signal	without	additional	
external	components	and	has	sufficiently	low	energy	consumption	to	
allow	powering	by	three	 lithium	AA-cell	batteries.	AudioMoth	has	a	
unit	size	of	58	×	48	×	18	mm3	and	a	weight	of	80	g,	including	batter-
ies	(Figure	1).

The	single	side	of	the	PCB	that	takes	all	of	the	electronic	com-
ponents,	 including	the	microphone,	faces	onto	the	battery	holder	
to	protect	the	mounted	components	from	knocks.	AudioMoth	cap-
tures	sound	through	a	1-mm	drill	hole	on	the	non-component	layer	
of	the	PCB,	on	the	opposite	side	of	which	sits	the	bottom-ported	
MEMS	microphone	as	part	of	the	analog	audio	circuitry.	The	fully	
assembled	 AudioMoth	 comprises	 a	 single,	 fixed	 unit.	 Users	 can	
choose	how	to	house	the	unit.	A	plastic	grip-sealed	bag	may	suf-
fice	to	prevent	weather	damage	for	short	deployments.	The	device	
also	 fits	 easily	within	 off-the-shelf	 housing	 or	 simple	 acrylic	DIY	
casings.

AudioMoth	is	designed	to	make	efficient	use	of	its	available	stor-
age	 by	 on-board	 real-time	 audio	 processing.	 The	 energy	 consump-
tion	while	processing	or	during	a	calculation	is	negligible,	consuming	
from	 10	 to	 25	mW	 between	 the	 lowest	 and	 highest	 sample	 rates.	
Deployments	 in	 locations	 likely	 to	 trigger	 large	quantities	of	 record-
ings	will	more	likely	be	limited	by	the	microSD	card	capacity	than	the	
battery	life.

2.4 |  Case studies

2.4.1 | New Forest cicada

The	 first	 study	 aimed	 to	 test	 for	 an	 extant	 population	 of	 the	 only	
cicada	 species	 native	 to	 the	 UK,	 in	 the	 New	 Forest	 National	 Park	
(50°52′34.7′′N,	 1°37′53.5′′W)	 which	 is	 its	 last	 known	 area	 of	

occupancy	 outside	 continental	 Europe.	 New	 Forest	 cicadas	 spend	
most	of	their	lives	underground	as	nymphs,	emerging	as	adults	in	∼7-
year	 cycles.	 The	 high-pitched	 call	 of	 the	 adult,	 at	 14	kHz,	 is	 out	 of	
the	hearing	range	of	most	humans	other	than	children.	This	 life	his-
tory	and	behaviour	has	made	it	difficult	to	search	for	the	species	 in	
manual	surveys.	Until	now,	listening	devices	have	been	too	expensive,	
energy-hungry	 and	 intrusive	 to	deploy	 in	 long-term	 systematic	 sur-
veys	over	the	large	scale	of	the	cicada's	potential	range.	In	a	first	such	
systematic	survey,	87	AudioMoths	were	deployed	in	four	locations	for	
2-	to	3-month	periods	from	spring	to	early-summer	of	2016	and	2017	
in	 the	New	Forest.	Devices	were	 positioned	 in	 habitats	 considered	
most	 likely	to	support	the	species,	based	on	previous	entomological	
surveys	and	historical	records	of	occurrence.

Recordings	of	the	species	made	in	Slovenia	were	used	to	charac-
terise	the	song	of	the	male	cicada,	as	an	extended	buzz	lasting	30	s,	
with	 a	 dominant	 14	kHz	 frequency	 band.	 Because	 this	 frequency	
is	 rarely	 present	 in	 the	 calls	 of	 other	 insect	 species	 found	 in	 the	
New	Forest,	the	14	kHz	component	of	the	New	Forest	cicada	song	
was	used	to	inform	the	detection	algorithm.	The	ratio	of	the	14	kHz	
component	 to	 the	8	kHz	 component	of	 each	 sample	produced	 an	
identifier	 robust	 to	 broad	 spectrum	noise.	This	 ratio	 overcame	 an	
issue	 with	 algorithms	 simply	 using	 14	kHz,	 which	 were	 prone	 to	
false	positives	from	white	noise	interference	caused	by	strong	wind	
or	by	movement	in	close	proximity	to	the	microphone.	A	recording	
was	triggered	by	a	high	ratio,	resulting	from	a	high	14	kHz	value	and	
a	 low	8	kHz	value.	A	 low	 ratio	 that	might	 result	 from	high	values	
at	both	14	and	8	kHz	was	more	likely	to	be	wind	than	a	cicada	call	
(Figure	2).

AudioMoth	operated	on	a	duty	cycle	routine,	waking	every	5	s	to	
listen	for	∼200	ms.	When	awake	and	listening,	the	detection	algorithm	

F I G U R E  1   	An	AudioMoth	(48	×	58	×	18	mm3	,	80	g)	listening	
for	the	New	Forest	cicada,	deployed	within	a	grip-sealed	bag	using	a	
cable tie to attach it to a tree branch
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cycled	 through	 buffered	 samples.	 Goertzel	 filtering	was	 applied	 se-
quentially	to	sections	of	the	buffer	using	a	moving	window.	This	pro-
duced	 a	magnitude	 for	 each	 of	 the	 14	kHz	 and	8	kHz	bands	 in	 the	
window.	 The	 14:8	kHz	 ratio	 of	 magnitudes	 for	 each	 window	 then	
produced	128	values,	from	which	was	derived	a	median	ratio.	If	this	
median	exceeded	a	calibrated	threshold,	it	triggered	a	30-s	recording;	
otherwise	the	device	returned	to	sleep	until	the	next	wakeup	period	
in	5	s.

2.4.2 | Gunshots in tropical forests

The	 second	 study	aimed	 to	 test	 the	detection	 range	of	AudioMoth	
for	capturing	gunshot	events	in	mature,	deciduous,	broadleaf	tropical	
rainforests	 in	Pook's	Hill	Reserve,	a	private	nature	 reserve	 in	Belize	
(17°09′27.2′′N,	 88°51′15.6′′W).	 Acoustic	 monitoring	 devices	 used	
for	gunshot	detection	are	currently	deployed	in	urban	environments	
to	 alert	 relevant	 authorities	 of	 events	 in	 real	 time	 (Choi,	 Librett,	 &	

F I G U R E  2   	Spectrogram	and	Goertzel	responses	used	to	classify	the	cicada	song:	(a)	the	New	Forest	cicada	recording	taken	in	Slovenia;	(b)	
the	Goertzel	filter	response	to	this	same	recording,	with	the	species	detected	and	distinguished	from	wind	interference	by	the	presence	of	a	
14	kHz	component	and	an	absence	of	the	8	kHz	component;	(c)	wind	noise	spectrogram	of	a	recording	taken	in	the	New	Forest;	(d)	the	Goertzel	
filter	value	in	response	to	the	wind	noise	recording	taken	in	the	New	Forest,	with	the	species	not	detected	because	the	14	kHz	component	and	
the	8	kHz	are	both	high

(a)

(b)

(c)

(d)
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Collins,	2014).	Such	applications	require	numerous	 large	and	mains-
powered	devices,	positioned	on	the	tops	of	buildings	in	strategic	loca-
tions.	These	systems	are	impractical	in	the	natural	environment,	away	
from	a	power	source	and	in	situations	where	large	devices	are	prone	
to	 unwanted	 discovery	 and	 destruction,	 as	 commonly	 occurs	 with	
camera	 trapping	 (Jumeau,	 Petrod,	 &	 Handrich,	 2017).	 Applications	
relating	to	resource	exploitation	require	small-sized,	low-energy	and	
low-cost	devices,	suitable	for	cryptic	deployment	of	sufficient	num-
bers	for	a	grid	that	achieves	full	coverage	of	large	tracts	of	exploitable	
habitat,	often	in	remote	terrain,	over	a	continuous	period	of	several	
months.	Many	of	the	natural	environments	most	prone	to	poaching	
have	no	Wi-Fi	or	mobile	coverage,	ruling	out	the	use	of	cloud-based	
acoustic	systems	(Rainforest	Connection	home	page,	2017).	This	ap-
plies	to	the	Pook's	Hill	Reserve	in	Belize.

Here	 36	AudioMoths	were	 deployed	 in	 pairs,	 one	 set	 to	 detect	
gunshots	and	the	other	set	to	record	continuously.	The	devices	were	
positioned	at	13	sites	on	hilly	terrain,	60–160	m	a.s.l.	Five	sites	were	
set	along	a	1.2	km	transect,	with	a	pair	of	devices	pinned	to	both	the	
east	 and	west	 side	 of	 a	 tree	 trunk.	 The	 remaining	 eight	 sites	were	
distributed	over	a	grid	north	and	south	of	the	transect	with	a	pair	of	
devices	 at	 each	 site,	 all	with	 the	 same	 (easterly)	 orientation,	 repre-
sentative	of	a	real-world	scenario.	All	sites	were	separated	from	each	
other	by	200	m.	Sixty-five	 controlled	gunshots	were	 fired	 in	 sets	 at	
various	 locations	within	 the	 grid,	 aiming	 either	 east	 or	west	 to	 test	
detection	capabilities	of	 the	devices	with	 respect	 to	 the	orientation	
and	distance	of	the	sound	source.	Two	common	gun	types	for	hunting	
in	the	area	were	used:	a	12	gauge	(Baikal	MP-18EM-M)	shotgun	and	a	
16	gauge	(Rossi	single	shot)	shotgun.

The	wide	array	of	false-positive	sources	and	variation	in	gunshot	
amplitude	due	to	factors	such	as	distance	and	topography	means	that	
an	algorithm	for	detecting	gunshots	must	accommodate	various	com-
ponents	of	the	acoustic	pulse,	such	as	the	initial	muzzle	blast,	and	the	
various	stages	during	its	sound	propagation.	When	recorded	at	close	
range,	 the	 initial	muzzle	 blast	 consists	 of	 a	 loud	 impulse	 covering	 a	
wide	range	of	frequencies.	As	the	sound	propagates	from	the	gunshot	
to	the	detector,	the	high	frequency	components	start	to	decay	as	they	
are	absorbed	into	the	air	and	the	surrounding	environment.	The	gun-
shot	detection	algorithm	for	AudioMoth	used	the	characteristic	rate	at	
which	select	frequencies	peak	and	then	decay	from	the	initial	muzzle	
blast,	determined	by	ground-truthing	trials	in	the	forest.

To	characterise	 the	gunshot	 features,	we	developed	a	 four	state	
hidden	Markov	model	and	used	the	Viterbi	algorithm	(Forney,	1973)	to	
establish	the	most	likely	path	through	the	four	states	taken	by	the	re-
cording.	These	states	are	as	follows:	silence,	initial	impulse,	decay	and	
tail,	each	representing	a	distinct	stage	of	a	shotgun	blast.	Each	state	is	
represented	by	three	frequency	components,	extracted	using	Goertzel	
filtering	around	2,000,	1,200	and	400	Hz	(Figure	3).	These	states	were	
modelled	from	recordings	of	gunshots	taken	at	the	field	site,	by	man-
ually	classifying	blocks	of	samples	within	each	recording	as	one	of	the	
four	states	and	then	fitting	log-normal	distributions	to	each	(Figure	4).	
These	probability	distributions	then	formed	the	hidden	Markov	model,	
on	which	 an	 implementation	 of	 the	Viterbi	 algorithm	was	 run.	 The	
vast	majority	of	windows	returned	a	series	of	silence	states,	with	the	

distributions	 representing	 this	 state	being	 robust	enough	 to	contain	
likely	false	positives	such	as	branches	snapping.	The	algorithm	deemed	
the	window	 to	contain	a	 shot	only	when	 the	 selection	of	 states	 re-
turned	by	the	Viterbi	algorithm	included	all	three	states	that	represent	
a	gunshot,	 in	 their	expected	sequence.	This	 triggered	AudioMoth	to	
save	the	current	buffer	containing	the	shot.

The	 ground-truth	 dataset	 revealed	 that	 gunshots	 in	 the	 tropical	
forest	environment	last	∼1	s	before	decaying	beyond	detection.	Unlike	
for	the	30-s	cicada	call,	a	duty	cycle	hoping	to	catch	the	event	in	one	
of	the	listening	periods	would	result	in	a	high	number	of	false	negative	
responses.	Accordingly,	 the	AudioMoths	were	programmed	 to	 listen	
constantly	throughout	the	assigned	period,	using	a	three	element	cir-
cular	buffer	to	collect	audio	samples	 in	one	buffer	while	performing	
analysis	on	the	two	previous	consecutively	filled	buffers.	This	resulted	
in	 an	 implementation	with	 no	 breaks	 in	 listening,	whilst	 limiting	 all	
analysis	to	calculations	that	could	be	performed	in	the	time	it	took	to	
fill	one	of	the	buffers.

3  | RESULTS AND DISCUSSION

3.1 | Detection capabilities

For	the	first	case	study,	the	detection	capabilities	of	the	device	were	
tested	by	playing	the	cicada	recordings	captured	from	Slovenia	inside	
an	anechoic	chamber.	When	the	cicada	recording	was	played	in	con-
junction	with	a	collection	of	5-s	recordings	of	background	noise	cap-
tured	in	the	New	Forest,	the	algorithm	achieved	a	true	positive	rate	
of	0.98	and	a	false	positive	rate	of	0.01.	These	tests	verified	its	ability	
to	react	to	 low	amplitude	cicada	recordings.	The	devices	responded	
to	a	14	kHz	∼60	dB	SPL	test	tone	within	a	range	of	10	m	in	a	forest	
environment.	The	test	tone	was	played	from	a	smartphone	with	the	
volume	measured	from	a	sound	level	meter	200	mm	away	from	the	
smart	phone	speaker.	After	deployment	in	the	field,	devices	were	col-
lected	and	all	of	the	triggered	recordings	were	consolidated	into	a	grid	
of	spectrograms.	Potential	true	positive	recordings	were	identified	by	
visual	 inspection	 of	 this	 grid	 over	 periods	when	 local	weather	 data	
indicated	suitable	conditions	for	emergence.	Playback	of	these	candi-
date	recordings,	however,	revealed	no	calls	of	the	New	Forest	cicada	
over	the	two-year	study.

For	the	second	case	study,	gunshot	amplitude	diminished	with	dis-
tance	 from	the	sound	source	as	expected,	and	was	affected	 further	
by	the	orientations	of	the	device	and	the	gun.	The	rate	of	decline	with	
distance	in	gunshot	amplitude	increased	substantially	when	the	device	
faced	away	 from	the	source,	and	 it	 increased	slightly	when	 the	gun	
was	facing	away	from	the	device	(Figure	5).	In	earlier	pilot	trials	in	the	
same	area	during	2016,	the	probability	of	an	audible	signal	in	contin-
uous	recordings	was	98%	at	≤300	m,	declining	to	93%	at	≤1	km,	from	
a	total	of	120	gunshots.	The	captured	data	were	run	through	the	de-
tection	algorithm	after	deployment,	which	identified	gunshots	at	up	to	
500	m	with	a	success	rate	of	66%,	decreasing	to	50%	at	1	km.	At	this	
furthest	distance,	devices	facing	towards	the	gunshot	were	80%	more	
likely	to	detect	it	than	devices	facing	away.	In	the	available	1-s	time	
interval	for	processing	each	buffer	of	samples,	the	algorithm	took	just	
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(a)

(b)

(c)

(d)

F I G U R E  3   	Spectrogram	and	Goertzel	responses	used	to	classify	gunshots:	(a)	spectrogram	of	a	gunshot	recording	taken	in	Belize	at	400-m	
distance	from	the	source,	(b)–(d)	the	400,	1,200	and	2,000	Hz	Goertzel	filter	values	in	response	to	the	gunshot	recording,	at	2,000	Hz	showing	
high	frequency	sound	decay.	Response	periods	are	colour-coded	according	to	the	selected	states	used	to	build	the	classification	model:	initial	
impulse	(red),	decay	(yellow),	tail	(green)
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F I G U R E  4   	Response	densities	of	the	three	Goertzel	filter	outputs	for	gunshots	collected	at	various	distances	in	Belize.	Each	histogram	
shows	a	fitted	log-normal	distribution	used	for	gunshot	detection	at	the	impulse	state.	The	Goertzel	filters	were	centred	at	(a)	400	Hz,	(b)	
1,200	Hz	and	(c)	2,000	Hz

(a)

(b)

(c)
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40	ms	to	run,	using	 just	4%	of	 the	available	processing	time.	Future	
iterations	of	the	algorithm	will	make	use	of	the	remaining	960	ms	of	
computational	time	to	take	into	account	variations	in	acoustic	struc-
ture	due	to	orientations	of	the	device	and	sound	source.

3.2 | Deployment logistics, field configuration  
and durability

A	single	AudioMoth	has	a	build	cost	of	∼US$43	(Table	S1).	Group	pur-
chasing	brings	the	price	down	to	∼US$30,	on	an	order	of	500	devices	
delivered	assembled,	pre-programmed	and	ready	for	deployment.	This	
economy	of	scale	is	particularly	relevant	to	large-scale	monitoring,	for	
example	of	forest	exploitation	where	many	devices	are	needed	to	cover	

large	tracts	of	protected	forest.	With	a	gunshot	detection	distance	of	
up	to	500	m,	a	single	AudioMoth	would	monitor	an	area	of	∼0.8km2. 
Thirty	AudioMoths,	bought	with	group	purchasing,	would	have	a	total	
cost	of	∼US$900,	and	the	capability	for	monitoring	an	area	of	∼24	km2. 
The	low	cost	of	AudioMoth	allows	researchers	to	deploy	more	devices	
with	their	budgets,	allowing	them	to	ask	bigger	research	questions.

With	AudioMoth's	 small	 dimensions	when	 using	AA-cell	 batter-
ies,	more	than	100	devices	can	fit	into	a	standard	field	backpack	with	
a	25-L	 capacity.	 For	 deployments	 in	 rough	 terrain,	 such	 as	 areas	of	
tropical	forest,	this	ability	to	carry	multiple	devices	greatly	facilitates	
field	deployments	and	reduces	the	infrastructure	needed	to	achieve	a	
large-scale	study.

F I G U R E  5   	Ratio	of	gunshot	peak	
amplitudes	relative	to	the	maximum	
possible	amplitude,	from	continuously	
recording	AudioMoths.	(a)	Devices	facing	
towards	the	gunshot	source,	demonstrating	
a	higher	performance	of	audio	capturing	
ability;	(b)	devices	facing	away	from	the	
gunshot	source,	demonstrating	a	lower	
performance	of	audio	capturing	ability

(a)

(b)
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During	the	preparation	stage	in	the	first	case	study,	the	user	re-
quired	 on	 average	 10	s	 to	 configure	 each	 device	 to	 a	 pre-set	 con-
figuration	 over	USB.	 Eighty-seven	 devices	were	 configured	 in	 total,	
taking	under	20	min	to	prepare	them	all	for	a	deployable	state.	Further	
possibilities	 exist	 to	 program	 multiple	 devices	 simultaneously	 by	
audio	 signals	 played	 through	 a	 computer	 speaker	 (Jewell,	 Costanza,	
&	Kittley-Davies,	2015).	This	could	bring	substantial	time	savings	for	
large-scale	deployments.

During	the	New	Forest	deployment,	23%	of	devices	suffered	some	
level	of	water	damage,	due	to	heavy	rain	and	failure	of	the	grip	sealed	
bag.	The	rainforest	deployment	trialled	a	commercial	waterproof	elec-
tronics	enclosure,	combined	with	an	acoustic	waterproof	permeable	
membrane	and	silica	gel	sachets	 to	absorb	moisture.	All	 these	addi-
tional	 parts	 cost	 a	 total	 of	∼US$8	 (Table	S1).	This	 combination	pro-
vided	an	effective	protection	for	the	duration	of	the	study,	with	the	
membrane	allowing	sound	penetration	to	the	microphone.

3.3 | Data storage and energy consumption

In	the	first	case	study,	the	5-month	total	period	of	field	deployment	
of	87	AudioMoths	 resulted	 in	129	hr	of	audio	 triggered	by	positive	
algorithm	responses.	These	were	identified	as	false	positives	from	a	
number	of	 sources,	 including	dog	whistles,	 leaf	 noise	during	 strong	
winds,	and	bird	songs.	In	comparison,	recording	continuously	for	12	hr	
per	day	over	the	same	period	would	have	created	156,600	hr	of	audio	
data	 for	analyses.	The	capacity	 to	perform	 real-time	detection	with	
a	programmable	algorithm	vastly	reduces	on-board	memory	require-
ments,	and	post-deployment	data	analyses.	Although	detection	capa-
bility	 is	also	available	on	commercial	devices,	such	as	 the	Peersonic	
RPA3	and	SM3BAT/SM4BAT	bat	detectors,	users	have	limited	abil-
ity	 to	 customise	 the	 in-built	 classification	 algorithm.	 AudioMoth's	
software	allows	users	to	have	complete	control	over	their	on-board	
detection	algorithms	for	their	specific	application,	thereby	greatly	re-
ducing	 the	need	 for	post-processing	 software	 to	 analyse	data	 after	
deployment.

The	most	 energy	 intensive	 task	on	AudioMoth	was	writing	data	
to	the	microSD	card,	which	consumed	17–70	mW,	depending	on	the	
configured	sample	rate	and	model	of	microSD	card.	 In	the	first	case	
study,	recording	to	a	16	GB	Hama	microSD	card	with	UHS	speed	class	
3	 at	48	kHz	 consumed	on	 average	23	mW	of	power.	 In	 the	 second	
case	 study,	 the	 same	microSD	 card	 at	 8	kHz	 consumed	 on	 average	
17	mW.	 For	 applications	 requiring	 ultrasonic	 frequencies	with	 sam-
ple	 rates	up	 to	384	kHz	 the	power	 consumption	 can	 reach	70	mW.	
Power	consumption	reduced	to	25	mW	or	less	when	classifying	audio	
in	real	time,	and	to	80	μW	when	sleeping	between	samples,	outside	
scheduled	wake-up	periods,	or	in	standby	mode.	The	low	demand	in	
standby	would	 allow	AudioMoth	 to	 keep	 track	 of	 time	 for	 approxi-
mately	6	years	in	that	mode,	using	three	AA-cell	lithium	batteries.	In	
the	first	case	study,	the	devices	remained	powered	for	the	total	2-	and	
3-month	periods	they	were	deployed	for.

The	complexity	of	the	processor	for	an	intelligent	device	directly	
affects	 its	 power	 consumption,	which	 in	 turn	 affects	 the	 size	 and	
weight	requirements	of	its	power	supply.	A	modular	computer-based	

PAM	device	 such	as	Solo	continuously	 runs	a	Linux	operating	 sys-
tem	 during	 operation	 (Whytock	 &	 Christie,	 2017).	 These	 devices	
consume	 anywhere	 from	 400	mW	 to	 1,000	mW	when	 idle	 (Figure	
6),	with	minimal	 to	no	power	management	 available	during	opera-
tion.	 In	 contrast,	AudioMoth's	 processing	 comes	 from	an	ultra-low	
energy	microcontroller,	which	has	complete	control	over	 its	power	
management,	 meaning	 it	 can	 run	 embedded	 code	 fast	 enough	 to	
power	 down	 and	 sleep	 between	 individual	 microphone	 samples.	
Even	during	recording	to	microSD	card	at	48	kHz,	AudioMoth	is	∼15 
times	more	energy	efficient	than	the	most	energy	efficient	modular	
computer-based	 PAM	 device,	 and	 ∼4,000	 times	more	 energy	 effi-
cient	during	its	idle	state.

4  | WIDER APPLICATIONS

The	development	of	AudioMoth	has	been	driven	by	demand	from	
the	 environmental	 monitoring	 and	 conservation	 community,	 with	
numerous	partnerships	around	the	world	testing	the	device	for	di-
verse	applications.	During	2016	and	2017,	160	prototype	devices	
were	 deployed	with	 the	 default	 recording	 software.	 For	 example,	
20	 AudioMoths	 were	 installed	 across	 the	main	 island	 of	Madeira	
in	 2016	 as	 part	 of	 a	 larger	 survey	 of	 bat	 populations	 to	 investi-
gate	anthropogenic	impacts	on	native	fauna.	This	project	captured	
more	 than	1TB	of	data,	which	 is	 contributing	 to	analyses	of	 long-
term	population	trends	to	aid	 in	future	conservation	efforts	 (Gibb,	
2016).	The	ultrasonic	capabilities	of	AudioMoth	were	also	used	 in	
two	studies	in	Southampton	city,	UK.	The	first	study	left	the	devices	

F I G U R E  6   	Power	consumption	comparisons	of	currently	
available	passive	acoustic	monitoring	(PAM)	devices,	when	idle	
(green)	and	when	recording	to	microSD	card	at	48	kHz	(blue).	RPi	
devices	are	all	modular	computers	constructed	on	a	Raspberry	Pi;	B+	
was	used	by	Razali	et	al.	(2015)	for	monitoring	rainforest	health;	A+	
was	used	by	Caldas-Morgan	et	al.	(2015)	for	monitoring	underwater	
industrial	activities,	and	Whytock	and	Christie	(2017)	for	their	Solo	
device.	SM	devices	are	commercially	available	from	Wildlife	Acoustics
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unattended	during	nocturnal	recordings	of	bats,	 in	urban	locations	
where	 larger	 and	 more	 financially	 valuable	 commercial	 devices	
would	 be	 vulnerable	 to	 theft.	 The	 second	 study	 used	 AudioMoth	
in	a	handheld	application	mapping	ultrasonic	noise	produced	by	the	
city.	 This	 study	 required	 the	 ultrasonic	 and	 light-weight	 capabili-
ties	of	AudioMoth	 for	 recording	on	 foot.	Lastly,	a	 field	expedition	
in	2017	used	the	AudioMoth	with	a	detection	algorithm	to	record	
the	 IUCN	 Red-Listed	 Cuban	 greater	 funnel-eared	 bat	 (Natalus 
primus),	 currently	 known	 to	 inhabit	 only	 one	 20-km2	 area	 of	 the	
Guanahacabibes	National	Park	 in	Cuba	(Wearn,	2017).	AudioMoth	
devices	 captured	 calls	 of	 free-flying	 individuals	 in	 recordings	 at	 a	
sample	rate	of	250	kHz.

Further	developments	are	exploring	the	potential	for	networking	
AudioMoth	by	LoRa	radio,	to	link	them	to	a	base	station	for	real-time	
signalling	 of	 acoustic	 events	 triggered	 by	 the	 detection	 algorithm.	
Although	 this	 capability	 adds	∼US$30	 to	price,	 the	devices	 are	 suf-
ficiently	 cheap	 to	make	 it	 a	potentially	 cost-effective	option	 for	 ca-
pacity	building.	AudioMoth	also	has	 the	ability	 to	 record	alternative	
types	of	data	to	memory,	instead	of	memory	inefficient	uncompressed	
WAV	 files.	 For	 example,	 AudioMoth	 can	 summarise	 the	 important	
characteristics	of	sounds	with	measurements	known	as	acoustic	indi-
ces	(Towsey,	Wimmer,	Williamson,	&	Roe,	2014).	Acoustic	indices	can	
summarise	recordings	into	meaningful	characteristics,	such	as	the	fre-
quency	distribution	and	acoustic	power,	which	can	be	viewed	as	false	
colour	 images	 to	 aid	 the	 assessment	 of	 biodiversity	 (Sueur,	 Farina,	
Gasc,	Pieretti,	&	Pavoine,	2014).	As	these	indices	require	less	space	to	
store	than	raw	audio,	devices	using	them	are	less	constrained	by	lim-
ited	storage	capacities.	In	addition,	significant	energy	benefits	accrue	
from	writing	small	summary	files	to	the	SD	card,	rather	than	raw	audio	
files.	We	are	currently	developing	real-time	acoustic	indices	that	make	
use	 of	 the	 fast	 processing	 available	 on-board	 the	AudioMoth	 hard-
ware.	Future	work	will	continue	to	test	the	feasibility	of	deployments	
by	drone	(Project	Erebus	AudioMoth	flight	test	page,	2017),	again	only	
possible	for	small	and	cheap	devices.

While	 the	configuration	software	enables	a	basic	 level	of	device	
customisation	 with	 minimal	 technical	 expertise,	 knowledge	 in	 pro-
gramming	 low-level	C	 is	required	to	achieve	full	use	of	AudioMoth's	
flexibility	 and	 produce	 new	 detection	 algorithm	 implementations.	
Bringing	 technology	 such	 as	 AudioMoth	 to	 less	 technically	 skilled	
users	remains	an	ongoing	challenge	in	the	area	of	conservation	tech-
nology.	We	see	possibilities	for	progress	in	the	future	with	solutions	
such	as	compilers	that	generate	C	code	from	simplified	implementa-
tions	of	digital	signal	processing	techniques.

5  | CONCLUSION

The	 purchasing	 opportunities	 available	 for	 simply	 designed,	 open-
source	and	configurable	hardware	can	dramatically	reduce	the	finan-
cial	cost	and	time	commitment	required	for	environmental	monitoring	
on	large	spatial	and	temporal	scales.	Monitoring	projects	can	address	
bigger	questions	with	access	to	smart,	small	and	power-efficient	de-
vices	 such	 as	AudioMoth.	We	are	 now	close	 to	being	 able	 to	 flood	

large	 areas	with	 these	 devices,	 for	 improved	 coverage	 of	 obscured,	
remote	or	 inhospitable	ecosystems.	High	 initial	 investment	costs	re-
main	 the	 biggest	 barrier	 for	 conservation	 projects	 in	 poorer	 areas.	
AudioMoth	provides	opportunities	for	groups	with	limited	budgets	to	
perform	systematic	bioacoustics	research,	for	example	by	benefiting	
from	economies	of	 scale	 in	 group	purchases.	With	 further	develop-
ments	in	the	new	technologies	described	here,	we	are	getting	closer	to	
achieving	a	basic	requirement	of	sustainable	development,	that	local	
communities	can	afford	to	monitor	their	own	natural	resources.
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