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Abstract

The rapid evolution in miniaturization, power efficiency and affordability of

acoustic sensors, combined with new innovations in smart capability, are vastly

expanding opportunities in ground-level monitoring for wildlife conservation at

a regional scale using massive sensor grids. Optimal placement of environmen-

tal sensors and probabilistic localization of sources have previously been consid-

ered only in theory, and not tested for terrestrial acoustic sensors. Conservation

applications conventionally model detection as a function of distance. We

developed probabilistic algorithms for near-optimal placement of sensors, and

for localization of the sound source as a function of spatial variation in sound

pressure. We employed a principled-GIS tool for mapping soundscapes to test

the methods on a tropical-forest case study using gunshot sensors. On hilly ter-

rain, near-optimal placement halved the required number of sensors compared

to a square grid. A test deployment of acoustic devices matched the predicted

success in detecting gunshots, and traced them to their local area. The methods

are applicable to a broad range of target sounds. They require only an empirical

estimate of sound-detection probability in response to noise level, and a sound-

scape simulated from a topographic habitat map. These methods allow conser-

vation biologists to plan cost-effective deployments for measuring target

sounds, and to evaluate the impacts of sub-optimal sensor placements imposed

by access or cost constraints, or multipurpose uses.

Introduction

Emerging technologies for small, low-cost, power-efficient

and smart monitoring devices are rapidly changing the

scope of possibilities for monitoring cryptic human

exploitation activities as well as biodiversity (Pimm et al.

2015; Cressey 2017; Kwok 2017; Berger-Tal and Lahoz-

Monfort 2018). Sizes and costs of acoustic monitoring

devices have reduced 20-fold in the last 2 years with

the emergence of fit-for-purpose and customizable
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alternatives to commercial options (Browning et al. 2017;

Whytock and Christie 2017; Wrege et al. 2017), and col-

lective purchasing schemes (Wheat et al. 2013). The

development of smart acoustic devices that store informa-

tion only in the event of a target sound triggering the

device has the potential to vastly increase the autonomy

of devices. This has particular relevance to monitoring in

tropical forests, which often have difficult access. For

example, the AudioMoth acoustic sensor is programmable

with classification algorithms that trigger event logging

(Hill et al. 2018). This open-source smart device combi-

nes low-energy acoustic detection with small size

(58 9 48 9 4 mm, 10 g without batteries) and low cost

(US$50 per unit). Price is minimized by collective pur-

chasing (GroupGets 2017). The combination of these

attributes has the potential to revolutionize acoustic mon-

itoring by making it affordable and logistically feasible to

flood large areas of inhospitable ecosystems with sensors.

Given the new possibilities for grid deployments using

numerous acoustic devices to monitor a large contiguous

area, the question arises as to where best to place them to

maximize the chance of detecting rare events, such as gun-

shots, chainsaws or animal calls. Optimal placement will

depend on a complex combination of topography, vegeta-

tion and weather, as well as the acoustic characteristics of

the target sound, the number of devices available for

deployment and their detection capability. Sensor place-

ment problems of this type have previously been studied

theoretically and they typically involve utility functions (in

this case the probability of detecting a rare sound) that

exhibit diminishing returns with increasing numbers of

deployed sensors (Krause et al. 2008a). Technically, this

property is known as submodularity, and it allows efficient

optimization using a greedy-heuristic algorithm. This algo-

rithm places the first device at the location that maximizes

the probability of detection, and then the second device at

the next location to maximize the probability of detection

given the location of the first. It continues through to

placement of all available devices, or to attainment of a

desired overall probability of detection. Sensor placements

that result from this greedy heuristic are provably close to

optimal placement (Krause et al. 2008a). They have been

shown to out-perform more computationally expensive

alternatives in a number of challenging problems, including

detecting contaminated water in a large water distribution

network (Krause et al. 2008b). To date, however, such

probabilistic approaches have not progressed beyond theo-

retical studies; they have neither been tested with field

deployment of sensors, nor applied to acoustic sensors.

Indeed, simulation tools capable of modelling the spread of

sound across topographically complex landscapes have only

recently become widely available for generic applications

(Keyel et al. 2017).

Here we develop probabilistic methods for determining

near-optimal placement of acoustic devices for monitoring

wildlife resources, and for localization of sound sources. We

describe a case study of a deployment of AudioMoth devices

(Hill et al. 2018) in Tapir Mountain Nature Reserve, Belize

(TMNR, 17° 070 N, 88° 540 W). TMNR is a 25-km2 area of

mature tropical moist forest on undulating topography of

100–400 m elevation (Fig. 1), which suffers from illegal hunt-

ing. To our knowledge, this is the first field test of optimiza-

tion theory and first deployment for a terrestrial application.

We started by developing the probabilistic theory for

optimization of device placement and localization of

detected gunshots. The Methods section describes the

design of data collection in the field for calibrating and

testing the procedure. The Results section gives the pre-

diction for near-optimal number and placement of

devices, and analyses its sensitivities. The results of field

deployment and testing demonstrate the sensitivities of

the gunshot localization procedure.

Theory of detector placement and gunshot
localization

Greedy heuristic for near-optimal placement of
detectors

We consider a landscape with a set of possible gunshot

locations, G, and a set of possible detector locations, D.
We assume that the probability of a gunshot occurring at

any location i 2 G is given by Pi
G normalized such thatP

i2G P
i
G ¼ 1. This probability will typically be the same

for all locations such that Pi
G ¼ 1= Gj j.

We have an acoustic propagation model that predicts

the sound pressure level when a gunshot occurs at loca-

tion i 2 G and is received at detector location j 2 D. This
sound pressure level is given by SPLi,j.

The effectiveness of the acoustic sensor device is assumed

to depend on the sound pressure level received at the detec-

tor location. The probability of a device actually detecting a

gunshot of given received sound pressure level is described

by function g, such that the probability of the detector loca-

tion j 2 D detecting the gunshot that occurs at location

i 2 G is given by P
i;j
D ¼ g SPLi;j

� �
. This function may take any

form, such as a step or a logistic, illustrated in Figure 2A.

The probability of detecting a gunshot that occurs at

any location in G when a single device is deployed at

location j is given by:

P
j
D ¼

X
i2G

Pi
GP

i;j
D : (1)

The probability of detecting a gunshot that occurs at

any location in G, when Nj j devices are deployed at the

set of locations N ; is given by:
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PND ¼ 1�
X
i2G

Pi
G

Y
j2N

1� P
i;j
D : (2)

Note that Equation (2) expresses the probability of at

least one device detecting the gunshot, and that this prob-

ability equals one minus the probability of all devices fail-

ing to detect it. Equation (2) further assumes

independent detection by each sensor. Although beyond

the scope of this paper, it would be straightforward to

relax this constraint. The expression reduces to Equa-

tion (1) when Nj j = 1.

Given the model above, our aim is to deploy Nj j
devices to maximize PND . When Nj j = 1 this is easily done

by choosing the single location, j 2 D, that maximizes P
j
D.

This case permits an optimal algorithm. When Nj j > 1,

the problem is combinatorial in that we must choose Nj j
locations from a possible Dj j locations. Large landscapes

preclude an optimal algorithm. We can note, however,

that this optimization problem is submodular (Nemhau-

ser et al. 1978). A real-valued function F defined on sub-

sets A and B of a finite set V is called submodular if for

all A � B � V and for all s 2 V, it holds that

F A [ sf gð Þ � F Að Þ� F B [ sf gð Þ � F Bð Þ. Submodularity

reflects the property that adding another member s to the

smaller subset A has greater impact on F than adding it

to the larger subset B. Submodularity often occurs in

problems involving sensor coverage, due to the form of

Equation (2), where P
N 1[ sf g
D � PN 1

D �P
N 2[ sf g
D � PN 2

D for

N 1 � N 2 � D, s 2 D and s 62 N 1; s 62 N 2. It results in a

proof that solving the optimization problem using a

greedy heuristic achieves at least a proportion 1 – 1/

e � 63% of the optimal solution (Krause et al. 2008a).

Experimental tests in silico support the greedy heuristic as

providing near-optimal solutions for a range of real-world

competitive sensor placement challenges (Krause et al.

2008a,b). The greedy heuristic in our setting takes the fol-

lowing form as an algorithm:

ALGORITHM 1 Greedy placement of devices

Data :Pi
G and P

i;j
D for i 2 G and j 2 D

Result : Set of device locationsN
N  ;
while Nj j\N do

s�  argmin
s2D;s 62N

P
i2G

Pi
G

Q
j2N[ sf g

1� P
i;j
D

N  N [ s�f g

������
end

Algorithm 1 allocates the first of N devices optimally,

and then greedily places subsequent devices. At each

iteration, it finds the optimal location to add one

additional device given the locations of the devices that

have already been placed. The algorithm has complexity

Figure 1. Satellite image of the Tapir Mountain Nature Reserve (TMNR), showing the Reserve encompassing homogeneous mature forest on

hillocky terrain, and rectilinear patches of agricultural land only outside its boundaries. Source: Google Earth image dated 24/3/2017.
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O N2 � Dj j � Gj jð Þ when directly implemented. This can

be improved by a factor of N by caching the values ofQ
j2N 1� P

i;j
D at each iteration.

Algorithm 1 can accommodate a number of simple

extensions. For example, the expected distribution of the

gunshots need not be uniform over the set G of all pos-

sible locations. Rather, it could reflect a reality of gun-

shots having higher likelihood at some locations than

others. The only requirement is that the distribution is

appropriately normalized such that
P

i2G P
i
G ¼ 1. Simi-

larly, the stopping condition of the greedy-heuristic algo-

rithm need not be based on a predetermined number of

devices. The algorithm can be stopped when the mar-

ginal decrease in detection-failure probability from an

additional sensor does not suffice to warrant its extra

cost.

Figure 2. Alternative forms of the detection probability response of an acoustic sensor to declining sound pressure level. Responses all take the

form: Pi;jD ¼ 1
�

1þ exp SPLP¼0:5 � SPLi;j
� ��

decay
� �� �

. (A) A simple step function with decay ? 0, and logistic function with decay = 10, both with

SPLP=0.5 = 50 dB. (B) Logistic regression (green trace) fitted to empirical detection successes/failures by AudioMoth devices (open circles with

frequencies). Recorded gunshot (G dB) and ambient (A dB) sound levels at each device yield the gunshot SPL above ambient as 10 9 log10(10
G/10

– 10A/10), reflecting the log scale of decibels as a measure of SPL. The best-fitting model had parameter values SPLP=0.5 = 48.7 dB and

decay = 4.868 (z = 5.88, N = 57, P < 0.001).
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Gunshot localization

Given a record of gunshot detections, it is possible to

calculate the most likely source of the gunshot. Con-

sider the case that a subset of the deployed sensor

devices at locations N D 2 N detects a gunshot within

some time period, while the others at locations

N n N D fail to do so. The likelihood that this set of

observations resulted from a gunshot at location i 2 G
is given by:

Li
D ¼

Y
j2N D

P
i;j
D �

Y
j2NnN D

1� P
i;j
D : (3)

The posterior probability that the gunshot occurred at

location i is thus given by Bayes’ theorem:

P0iG ¼
Pi
GLi

DP
i2G

Pi
GLiD

: (4)

This describes a normalized discrete probability distri-

bution over all possible gunshot locations such thatP
i2G

P0iG ¼ 1.

If more than one sensor detects the gunshot and we

have access to the time that each detection occurred,

we can extend the analysis to further refine this distri-

bution. Consider that the gunshot actually occurred at

unknown time tG at location s 2 G. Each sensor at

location j 2 N D will detect the gunshot at a later time

t
j
D due to the propagation of the sound from the

source of the gunshot to the location of the sensor.

This detection time is given by:

t
j
D ¼ tG þ ds;j

cair
þ�j; (5)

where cair is the speed of sound in air, ds,j is the dis-

tance between gunshot location s and sensor location j

and �j is a random variable that represents noise in this

observation. This noise results from two sources: (i) the

drift of the real-time clock within the sensor and (ii)

uncertainty in the exact propagation path and speed of

the sound.

Both sources of noise can be addressed through the

same formalism by imposing an arbitrary order over all

sensor locations j 2 N D such that the noise can be con-

sidered to have been drawn from a multivariate Gaussian

distribution given by:

e�Normal 0;Rð Þ; (6)

where Σ defines an jN Dj � jN Dj covariance matrix.

Now, for any individual possible gunshot location

i 2 G, we can impose the same order as above to define a

vector of times, ti, whose elements are given by:

t
j
i ¼ t

j
D �

di;j

cair
� tG: (7)

It only remains to choose the appropriate noise model

and define Σ accordingly. In the case of noise resulting

from drift of the real-time clock within each sensor, the

noise is independent between sensors and Σ is a diagonal

matrix given by:

Rj;k ¼ r2drift if j ¼ k
0 otherwise

�
; (8)

where r2drift is a variance describing the typical accuracy of

the real-time clock. Note that in this case, the covariance

matrix is identical for all possible gunshot locations i 2 G.
In the case of additional noise due to uncertainty in

the exact propagation path and speed of the sound, we

consider an additional term given by:

r2i;j ¼ di;jr
2
prop; (9)

which is proportional to the distance between gunshot

location i and sensor location j. This noise is not inde-

pendent between sensors. Two sensors that are close

together will likely be similarly affected by the same prop-

agation uncertainties; those that are far apart will not.

Thus, we define the correlation between the noise at sen-

sor locations j and k as corij;k such that each element of

the covariance matrix is now given by:

Rj;k
i ¼

r2drift þ r2i;j if j ¼ k

ri;jri;kcorij;k otherwise

(
; (10)

where the correlation function expresses the fact that sen-

sor locations close together are more correlated than

those that are further apart, and is given by:

corij;k ¼ 1� dj;k

di;j þ di;k
: (11)

Finally, the likelihood that the observed time differ-

ences, ti, were generated by a gunshot occurring at loca-

tion i 2 G is given by:

Li
T ¼ max

tG
qðti; 0;RiÞ (12)

where we maximize over the unknown time at which the

actual gunshot occurred, and where q(ti; 0, Σi) is the

standard multivariate Gaussian density function:

qðx; l;RÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffij2pRjp exp � 1

2
ðx � lÞTR�1ðx � lÞ

� 	
;

(13)

Combining this result with that of Equation 3, and

again using Bayes’ theorem, gives the posterior probability

that the gunshot occurred at location i as:
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P0iG ¼
Pi
GLiDLi

TP
i2G

Pi
GLi

DLiT
(14)

Note that the values of r2drift and r2prop determine the

balance of evidence between the probability of detection

and the timings of the detections. Reducing the drift of

the real-time clocks within the sensors, or deploying an

external time signal that can be used to re-synchronized

them, will reduce the value of r2drift improving the accu-

racy of the estimate of the source of the gunshot. Simi-

larly, we would expect more homogenous deployment

environments to exhibit smaller values of r2prop.

Materials and Methods

Characterization of detection probability

AudioMoth sensors were prepared for deployment by pro-

gramming the on-board software with a classification algo-

rithm to record an event upon each detection of a gunshot

(Hill et al. 2018; P., Prince, A.P. Hill, E. Pi~na-Covarrubias,

C.P. Doncaster, J.L. Snaddon, A. Rogers, in submission).

Field tests at the deployment site characterized the decay in

detection probability with diminishing sound pressure level

(SPL) in decibels (dB) away from a gunshot.

The field tests used three independent transects in April

2018 in forest contiguous with TMNR (Fig. S1). At each

transect, four AudioMoths were placed at one end with a

SPL meter (Peaktech 8005). A 12-gauge shotgun (Baikal

MP-18EM-M) was fired in a perpendicular orientation to

the devices at approximately 200-m intervals along each

transect, up to a distance of about 1 km from the devices.

This procedure was repeated in daylight and nocturnal con-

ditions. A total of 57 records of gunshot detection success/

failure were obtained with associated SPL of the gunshot

and ambient noise at the device, in A-weighted decibels

(Data S1). A logistic model was fitted to the data on gun-

shot noise above ambient, shown in Figure 2B. Its parame-

ter estimates defined the form of the function g

underpinning the greedy-heuristic algorithm.

Characterization of sound spread

For the characteristic loudness of a gunshot at source, we

used data from 167 replicate outdoor shots given in Mur-

phy and Tubbs (2007) for a 12-gauge shotgun (Remington

model 11-87). They obtained an average SPL of 132.6 dB at

1 m from the gun, in the 1250-Hz one-third octave band-

width. This frequency is closest to the centre of the 400-

2000 Hz bandwidth detected by the AudioMoth sensor.

In order to characterize the spread of gunshot sound

from a gun that might be fired anywhere within the

boundary of TMNR, we simulated a grid of gunshots at

200-m intervals covering the entire reserve. This was done

with the SPreAD-GIS tool contained in the Sound Mapping

Tools package (Keyel and Reed 2017) and implemented in

ArcGIS. SPreAD-GIS modelled sound spread in a raster

stack of 829 gunshots, using 133 dB for the SPL at source.

The simulation assumed a background ambient noise of

45 dB, based on empirical nocturnal measures within

TMNR taken from the transects. Most background noise

was attributable to orthopterans. It also assumed an average

nocturnal temperature of 25°C, humidity of 60% and wind

speed of 5 km/hr from due East, based on yearly average

meteorological conditions at the nearest weather centre,

70-km to the SE in the city of Dangriga (National Meteoro-

logical Service of Belize 2016). For each gunshot, the simu-

lation produces a raster map of sound spread from the

source under the given weather conditions, for a vegetation

of hardwood or deciduous forest covering a topography

given by an elevation map of TMNR (Technology Trans-

formation Service 2016). In the homogeneous forest of

TMNR, sound spread depends most sensitively on topogra-

phy and wind speed and direction (Fig. S2).

To test the sensitivity of predictions to SPreAD-GIS

input parameters, further runs replicated all its input

parameter values, except (1) changing the gunshot grid

from 200 m to 150 m; or (2) changing wind speed from

5 km h�1 to 0 km h�1; or (3) changing the generic ‘sea-

sonal condition’ parameter from ‘clear, calm summer

night’ to ‘clear, windy summer night’.

Simulation of gunshot detection probability
with distance

The logistic model shown in Figure 2B was applied to the

raster stack of 829 simulated gunshots across TMNR to

translate its soundscape into a detection probability land-

scape. The predicted distribution of SPL in decibels as a

function of distance from source, collated across all gun-

shots, converts to a distribution of detection probabilities

that is conditional on topography, and reflects local weather

and vegetation (Fig. 3; example of a contributing gunshot in

Fig. S3). The probability distribution predicts that detection

within TMNR is frequently possible up to 500 m distance

from a gun, but much rarer above 1000 m. This distribution

aligned with our wider experience of testing gunshot

detectability in the forest habitat of this region (Fig. S4).

The greedy-heuristic algorithm derived above was

applied to the detection probability landscape. This was

done in the R environment (R Core Team 2017) using

the script listed in Data S2. The algorithm calculates the

number and location of devices for near-optimal place-

ment, given a logistic function for detection probability

and a gunshot soundscape. It assumes equal probability
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of gunshots occurring anywhere within TMNR. It places

devices only within the boundary of TMNR, which is also

the boundary of the gunshot grid that generates the

soundscape. The algorithm ceases to add more devices

when the marginal decrease in detection-failure probabil-

ity from an additional sensor becomes less than 0.001.

Test deployment and localization of
gunshots

A total of 10 AudioMoth devices were deployed in the

NE sector of TMNR in April 2018, at all near-optimal

locations in that sector predicted by the greedy-heuristic

algorithm. The hilly terrain and hurricane-damaged forest

impeded access to the extent that some devices could only

be placed to within 100 m of the target location. The effi-

ciency of the deployment was tested by firing nine gun-

shots within the sector. The 12-gauge shotgun was

oriented in a range of directions over the nine shots,

under clear and calm daytime weather conditions with

ambient noise levels varying between 33 and 52 dB (me-

dian 36 dB). Deployed AudioMoths logged events only to

the nearest second. We therefore tested the accuracy of

gunshot localization based on actual detection successes/

failures and the detection time-lags between devices

imputed from knowledge of actual gunshot locations.

Figure 3. Collated output from the grid of 829 gunshots at 200-m intervals, simulated in SPreAD-GIS using inputs given in the second section of

the Methods. (A) Distribution of SPL above ambient as a function of distance from the sound source; blue circle highlights 133 dB at source. Inset

map shows the grid, with ringed gunshot analysed in Fig. S3. (B) Conversion of SPL to detection probability using the logistic algorithm

parameterised in Figure 2B; blue circle highlights probability = 1.0 at source.
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Results

Placement of devices

The greedy-heuristic algorithm predicted a requirement

for 79 devices within TMNR when applied to the sound-

scape from 829 gunshots on a 200-m grid (Fig. 4A). The

near-optimal placements were distributed throughout the

reserve, mostly on local high ground or slopes overlook-

ing valleys (Fig. 4B). The actual deployment of 10 devices

targeted the 10 placements in the north-easternmost cor-

ner of TMNR (ringed in Fig. 4B).

Further simulations with a finer-scale grid of 1486 gun-

shots at 150-m intervals across TMNR produced the same

predicted number of devices and similar ordering, but took

79 hrs to create the raster stack in SPreAD-GIS compared to

44 h for the 200-m grid, on a PC with 12 Gb RAM and

3.20 GHz processor. Differences in predicted locations were

deemed insufficient to warrant the extra time requirement.

The near-optimal placement of 79 devices across the

full extent of TMNR was predicted to achieve a residual

detection-failure probability of 0.013 (Fig. 5A, right-most

end of blue trace). In effect, this deployment would miss

less than 2% of any gunshots fired anywhere within

Figure 4. Near-optimal placement of AudioMoths within TMNR predicted by the greedy-heuristic algorithm, given function g (Fig. 2B) and a

gunshot soundscape (Fig. 3A). Sites are ranked from 1 (most marginal drop in probability of detection failure) to 79 (least marginal drop).

Placement is set against (A) the foundational landscape of PjD: the probability of a single AudioMoth detecting a gunshot at any grid location and

(B) the underlying topography. The dashed blue line shows the boundary of TMNR and the magenta oval in the top corner encompasses the 10

locations targeted for deployment of devices in April 2018. Axis labels show UTM 1-m coordinates.
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TMNR. Even in the event of all the five highest ranking

devices failing, the probability would rise only to 0.025,

with lower-ranked devices tending to compensate for

failed neighbours. In putative alternative placements of 79

devices across the full extent of TMNR, residual detec-

tion-failure probabilities rose to a predicted 0.110 for reg-

ular spacing on a 600-m grid, and 0.171 for random

spacing (Figs S5 and S6). Detection-failure probabilities

no greater than these magnitudes were achieved with

near-optimal placements of only 40 and 32 devices

respectively. The near-optimal placements can therefore

halve the number of devices required to achieve a given

detection efficiency for a deployment. These savings are

robust to the threshold level of detection efficiency. Thus

the residual detection-failure probability of 0.013 that

requires 79 near-optimal placements would need 143 reg-

ular placements (on a 450-m grid). For a more relaxed

threshold or more limited availability of devices, regular

placements of 50 devices within TMNR (on a 750-m grid)

would achieve a residual detection-failure probability of

0.237, which is just bettered by near-optimal placement

of only 26 devices.

In the absence of wind, only 46 devices were required to

achieve a predicted detection-failure probability of 0.013.

Figure 5. Declining probability of detection failure (1� PND ) as a function of number of devices Nj j. (A) Near-optimal placements (Fig. 4) have a

decreasing marginal drop with each additional device (blue trace), until the 80th device has no detectably lower probability than the 79th.

Magenta dots show the declining probabilities for the 10 devices actually deployed in April 2018, at their locations near to ranked placements

(inset map, magenta circles). (B) For simulated gunshots occurring only above the magenta line in the inset map, ranked crosses and graphed blue

trace show the predicted near-optimal placement of 23 devices; magenta circles and graphed dots show the actual deployment of 10 devices.
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Using the SPreAD-GIS simulation of seasonally windy

instead of calm conditions, and 5 km h�1 wind, near-opti-
mal placement required 90 devices to achieve a residual

detection-failure probability of 0.017. The larger number of

devices reflects the noisier background induced by wind.

Under these conditions, the placement of 79 devices that

was near-optimal for seasonally calm conditions would

achieve a residual detection-failure probability of 0.04

(Fig. S7). The difference in detection probability is negligi-

ble for the first 30 devices, which tend to get placed at, or

close to, the same locations for both conditions.

The actual deployment of 10 devices in the NE sector

of TMNR had a predicted residual detection-failure prob-

ability of 0.874 for gunshots occurring all across TMNR

(Fig. 5A, right-most magenta dot). This probability would

have dropped to 0.858 if we had managed to place the

devices precisely at predicted near-optimal locations,

instead of 3 to 100 m distant (Fig. 5A, inset map). The

detection-failure probability diminishes to 0.045 for gun-

shots occurring only in the NE sector (Fig. 5B, right-most

magenta dot). It would have dropped to 0.001 if we had

placed 16 devices precisely at predicted near-optimal loca-

tions for gunshots only in this NE sector (Fig. 5B, right-

most end of blue trace), instead of 2 to 453 m distant

from these placements (Fig. 5B, inset map).

Detection and localization of gunshots

Of the nine trial gunshots in the NE sector, all triggered at

least one of the 10 deployed AudioMoths, with four shots

triggering two devices and one shot triggering three devices

(Fig. 6A). The number of detecting devices had no apparent

relation to ambient sound level. Regardless of gun orienta-

tion, gunshots tended to trigger the closest AudioMoth(s),

at distances of 168 to 370 m, except for gunshot #9 which

triggered a device at 872 m (Fig. 6A). Each detected gun-

shot could be located to the Dirichlet tile(s) of its detecting

AudioMoth(s), on the assumption that no other devices lay

closer to the gunshot (Fig. 6A). This held true for most trial

gunshots; however, potential for error is illustrated by the

northernmost AudioMoth, which detected gunshot #9 from

further away than four other devices, only one of which also

detected the gunshot.

The accuracy of gunshot localization by the probabilistic

method depended on the number of detecting devices and

the availability of time-lag data. For example, if the north-

ernmost device had detected gunshot #9 later than the only

other detecting device by 1.457 s, this would indicate that

the gunshot occurred 506 m further from the northern-

most device than from the other device, assuming unim-

peded sound travel at 347.3 m s�1 through air at 25°C and

60% humidity. Grey contours in Figure 6B identify the

region of highest likelihood of gunshot location based only

on this information and estimates of timing uncertainty.

With negligible error in timings, the region resolves into a

hyperbola, familiar in ‘hyperbolic navigation’ by detection

time-lags in audio or radio signals (detailed in Fig. S8; Li

et al. 2016). The best estimate of gunshot location is given

by the simulated gunshot that maximizes P0iG in Equa-

tion 14, with a best-matching probability of replicating the

observed set of detection successes and failures and

observed time-lag. In this case, the estimated gunshot lay

519 m from the actual location (Fig. 6B, showing its sound

spread; R script for the procedures in Data S3). The magni-

tude of separation probably reflects influences on detection

success by time-specific and local ambient conditions that

deviated from the modelled conditions.

Timed detection of a gunshot by more than two devices

allows triangulation of relative distances, which greatly

improves the location power. For example, small time dif-

ferences in the event logs of the three devices detecting

gunshot #5 localize the gunshot to a small region in

Fig. 6c (geometric analysis in Fig. S9). The estimated gun-

shot lies 60 m from the actual gunshot (black star), and

87 m closer than the best estimate without time-lag data.

Applications of the probabilistic method to other gun-

shots obtained locations to within 170 m of the actual gun-

shots even when two detecting devices lie in close proximity

to each other (Fig. S10). The method also works for gun-

shots picked up by only a single device, or not picked up by

any device (Fig. S11). In these cases, the data contain no

time-lags with which to maximize the likelihood. It is then

based only on the simulated gunshot that best replicates the

single observed detection success, or absence of any success,

and the detection failure of all other, or all, devices (Equa-

tion 4). The case of no detections usefully identifies the area

of weakest coverage by devices (Fig. S11b).

Discussion

The methods established here, of sensor deployment and

sound-source localization, address one of the major chal-

lenges to the promise of non-invasive monitoring, of col-

lecting ecologically relevant data suitable for hypothesis-

testing science (Pimm et al. 2015). To date, almost no

systematic records exist anywhere on hunting frequency

in tropical forests, other than indirectly sourced estimates

from questionnaire surveys (Foster et al. 2016). Monitor-

ing in the Korup National Park in Cameroon using 12

passive acoustic devices continuously recording for

2 years detected a high level of shooting within a 54-km2

grid (Astaras et al. 2017). The study was able to quantify

an increase in gunshot frequency between years that was

not detected in foot patrols of the area, and a prevalence

of nocturnal over diurnal hunting. Such studies are rare

because until now monitoring devices have been
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expensive to purchase, and bulky to deploy in areas of

interest that often encompass remote habitat. The Korup

study used SM2+ acoustic loggers (Wildlife Acoustic Inc,

Maynard, MA) each weighing 680 g without batteries

(200 9 200 9 64 mm) and costing over US$800. Their

passive acoustic listening requires quarterly battery

changes, and monitoring applications require analysis of

thousands of hours of audio data. The new availability of

cheaper, more power-efficient and smart devices opens up

new options for monitoring large contiguous areas with

massive grids of devices.

Our probabilistic method of device placement quantifies

the sensitivities of acoustic monitoring to topography,

wind and distribution of sound sources. Analyses of alter-

native scenarios allow conservation biologists to measure

impacts of sub-optimal deployment, imposed by access or

cost constraints, or by using deployments to serve multiple

purposes (e.g. to detect gunshots and chainsaws). For a

desired threshold of detection efficiency, near-optimal

placement on hilly terrain can halve the number of devices

otherwise needed for square or random grids, thereby more

than halving monitoring costs. The method is applicable to

any of the habitats modelled by current sound-spread

packages (Keyel and Reed 2017), to passive as well as smart

sensors, and to biotic as well as anthropogenic sounds

(Blumstein et al. 2011). It advances substantially on the

current recommended practice of modelling the detection

probability as a function of distance, or using a fixed detec-

tion radius for conservation applications (Thompson et al.

2010; Browning et al. 2017). The probabilistic method of

localizing the sound source makes use of whatever data

may be available on detection timings or simply on detec-

tion successes and failures, and also allows prior beliefs

about the most likely sources of gunshot to be incorporated

within the same principled framework.

The closest work to our own is a desktop study of gun-

shot sensors by Gonz�alez-Casta~no et al. (2009), developed

for the different setting of externally powered acoustic sen-

sors. This required a multi-objective optimization, which

was solved by searching for solutions on the Pareto front,

where no other solution has both higher coverage and lower

cost in terms of distance to a power line. Our battery-pow-

ered sensors present the simpler task of optimizing detection

with a cost that is proportional only to the number of

deployed sensors. Gonz�alez-Casta~no et al. (2009) modelled

detection with a step function (cf. Fig. 2 fitted smooth func-

tion) and sound propagation over two-dimensional habitat

(cf. Fig. 3 SPreAD-GIS three-dimensional habitat). For gun-

shot localization, they assumed independent uncertainties in

detection timings caused by both clock drift and propaga-

tion path, which ignores the reality of correlated propaga-

tion paths (Equations (9)-(11)). Their resulting least-

squares estimate of gunshot location equates to our maxi-

mum likelihood estimate from timings alone (Equa-

tion (12)) with zero propagation noise. Our probabilistic

framework additionally incorporates a prior over possible

Figure 6. Detection of nine trial gunshots by ten devices in TMNR. (A)

Gunshot locations (green dots, arrow indicating gun orientation), and

deployed AudioMoths (magenta circles, dotted lines linking to detected

gunshot(s)). Dirichlet tiles (magenta tessellations) each contain all points

within TMNR that lie closer to the device at its centroid than to any other

device. (B) Actual gunshot #9. (C) Actual gunshot #5. Plots show actual

gunshot (green dot), detection success/failure by devices (closed/open

magenta circles), the best estimate of gunshot location (black star,

Equation 14), and decay in its SPL away from this source (white contours

at 3-dB intervals, each equivalent to halving loudness). Dark- and light-

grey stars show 2nd and 3rd best estimates of gunshot location. Grey

contours show 20% intervals in likelihood of gunshot location based only

on detection time-lag(s) between detecting devices (Equation 12, r2drift =

0.001, equivalent to 0.03 s drift in device clocks; r2prop = 0.000045,

equivalent to 10% drift in ~1.5 s propagation time over 500 m).
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locations, and evidence from detection itself (Equation (4)).

This facilitates extension to more complex settings, for

example localizing the most likely single source of rapid fire,

or a repeating chainsaw or biotic signal, even when each

repeat may trip different sets of sensors.

The probabilistic methods described here have limita-

tions common to any environmental detection system, in

soundscape modelling, sensor design and detection capa-

bility, which all require evaluation by site-specific ground

truthing. The SPreAD-GIS soundscape that underpins

detection probabilities requires significant processing

times for deployments across complex topography. This is

a one-off cost for a given environment, however, as the

same soundscape is used for both device placement and

sound localization. We recommend that users trial alter-

native mesh sizes for modelling sound grids, which largely

dictate processing time. In our tests, we constructed the

soundscape from regionally averaged values of back-

ground noise, wind speed and direction, and influence of

habitat type on sound spread. With more local-scale

knowledge, these could be set to specific values for each

modelled gunshot. Although the orientation of the shot-

gun made little difference in our localization tests using a

dense network of devices, the source amplitude will vary

with the direction and elevation of the barrel. The omni-

directional sound dispersion modelled by SPreAD-GIS

means that sensor placement assumes an absence of direc-

tional bias in gunshots, and gunshot localization will be

greatly improved by accurate measurement of time-lags.

Sensor clocks will typically have crystals giving an accu-

racy of 20 parts per million, equivalent to 2 s day�1.
Clock synchronization can be achieved on AudioMoths

using external plugin modules, such as a GPA receiver

with accurate satellite timing, or a radio transmitter

synced to a receiving base-station clock. The benefit of

synchronization needs weighing against the extra cost and

power consumption of the plugin. The same probabilistic

algorithm can be used either with or without clock syn-

chronization, however, and without it, the evidence for

the gunshot location is derived from the detection events

only, rather than their timings. Any sound-detection algo-

rithm programmed into sensors requires thorough valida-

tion against continuous recording within the monitored

habitat, and manual review. The advantage of smart

detection in reducing power consumption and data stor-

age nevertheless remains set against the inherent limita-

tion that target sound detection cannot be validated with

respect to concurrent background noise at each sensor.

This trade-off will have particular relevance to target

sounds with less easily calibrated signal attenuation, such

as wild animal calls.

Sound-source localization across tens of metres, for

example of bird calls, may be too fine-scale for soundscape

mapping by GIS or localization based on detection proba-

bility. In such cases, an array of networked sensor nodes,

each containing a sub-array of multiple microphones can

be used to detect direction as well as time of arrival of

sounds from continuously synchronized clocks. Collier

et al. (2010) deployed this system in a two-dimensional

landscape with a sufficiently small array of nodes to localize

bird calls from the sum of cross-correlations between

microphones, achieving accuracies to well within a metre.

Our empirical tests constituted the first stage in a

planned deployment for near-optimal detection of gun-

shots across the full extent of TMNR, at the invitation of

the Belize Forest Department. Their interest is in sustain-

able exploitation of the tropical forests that still cover

40% of Belizean land mass. A shortage of rangers for

patrolling forests puts a high premium on automated

monitoring. Ongoing developments in equipping devices

with classification algorithms for detecting chainsaws and

animal calls (P., Prince, A.P. Hill, E. Pi~na-Covarrubias,

C.P. Doncaster, J.L. Snaddon, A. Rogers, in submission)

raise the prospect of efficient multipurpose deployments.

New advances in radio communication promise the

future capability for real-time detection and localization

of exploitation activity, by linking networked devices to a

base station. Commercial systems of this sort already exist

for camera trapping (e.g. Cuddelink product page 2018),

and are undergoing development for open-source Audio-

Moth sensors (Hill et al. 2018).
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