

MICHIGAN STATE UNIVERSITY

Determining landscape factors influencing tropical amphibians using a multispecies occupancy model

José W. Ribeiro Jr, Tadeu Siqueira, Elise F. Zipkin

email: jwribeirojunior@gmail.com

Hoffmann et al. 2010, IUCN 2016

Forest loss

> Major driver of biodiversity loss

Figures credit: http://blog.globalforestwatch.org

Collins and Crump 2009, Gámez-Virués et al. 2015

Fahrig 2003

Habitat fragments

- > Alters vegetation composition
- > Increase light
- > Increase temperature
- > Decrease water quality

Matrix matters

Prevedello and Vieira 2010, Ferrante et al. 2017

Stream density

Proxy for habitat amount

Increase connectivity between aquatic habitats

Catchment area and Slope

- > Physical habitat
 - Substrate type
 - Stream size
- > Variation in vegetation

Parris and McCarthy 1999, Eterovick and Barata 2006, Keller et al. 2009, Ribeiro et al. 2012

Catchment area and Slope

- Physical habitat
 - Substrate type
 - Stream size
- > Variation in vegetation

Catchment area

height difference / horizontal distance

Parris and McCarthy 1999, Eterovick and Barata 2006, Keller et al. 2009, Ribeiro et al. 2012

Why Brazilian Atlantic Rainforest Amphibians?

Source: http://biodiversitymapping.org

Why Brazilian Atlantic Rainforest Amphibians?

Source: http://biodiversitymapping.org

Brazilian Atlantic Forest

> Atlantic Forest originally covered >1,450,000 km²

> ~15% of forest remains

14% is protected by

nature reserve

Ribeiro et al. 2009, Joly et al. 2014

Investigate the influence of landscape characteristics on amphibian occurrence probabilities in Brazilian Atlantic Forest streams

EXPECTATIONS

Forest cover and Stream density

Occurrence probability

Forest cover and Stream density Agriculture

Catchment area and Slope

Agriculture

Occurrence probability

Catchment area and Slope

EXPECTATIONS

Forest cover and Stream density

Catchment area and Slope

Forest cover and Stream density

Agriculture

Occurrence probability

Catchment area and Slope

EXPECTATIONS

Forest cover and Stream density

Agriculture

Catchment area and Slope

Forest cover and Stream density Occurrence probability

Agriculture

Occurrence probability

Catchment area and Slope

STUDY AREA Forest (69%) Silviculture (19%) Agriculture (11%) Streams State Park Kn 1.25 2.5

AMPHIBIAN SAMPLING

Active - Standardized Acoustic and Visual Transect Sampling (SAVTS)

Passive - Automated Acoustic Recorders (AAR)

rainy season (Oct 2015 - Mar 2016)

AMPHIBIAN SAMPLING

Active method - SAVTS

- > 100 m transect segment
- > Stream channel, vegetation, and litter
- > Recorded all calling individuals
- > Each stream was sampled twice

Parris 2004, Alix et al. 2014, Walls et al. 2014

AMPHIBIAN SAMPLING

Passive method - AAR

> Automated Acoustic Recorders

> 1.5 m above the ground

> 5-min periods each hour from 4-11 pm

> During three days

Parris 2004, Alix et al. 2014, Walls et al. 2014

Dorazio and Royle 2005, Zipkin et al. 2009, Kéry and Royle 2015

MULTI-SPECIES MODEL

Detection model

Date - linear

Precpitation

logit link function

Dorazio and Royle 2005, Zipkin et al. 2009, Kéry and Royle 2015

MULTI-SPECIES MODEL

Community-level paramater

> Use a community-level distribution (hyper-distribution)

> Normal distribution

Dorazio and Royle 2005, Zipkin et al. 2009, Iknayan et al. 2014, Kéry and Royle 2015

Community-level occupancy

Community-level occupancy

> 95%

Community-level occupancy

> 95%

Community-level occupancy

> 95%

Species-level occupancy

Stream density

-1.0 -0.5

1.0

Detection process

> Average detection varied widely (0.01 - 0.88)

> Influenced by the method

> Peaked middle of the rainy

Active

Passive

season

Community-level detection

> On average, small streams and flat topographic areas increase

the amphibian occurrence probabilities

Forest fragments can maintain amphibian diversity in a forested dominated landscape

> Agriculture has a negative impact on amphibians

ACKNOWLEDGEMENTS

The São Paulo Research Foundation

Grants: 2014/07113-8 and 2016/07469-2

ZIPKIN QUANTITATIVE ECOLOGY LAB

BIODIVERSITY ANALYSIS & SYNTHESIS LAB Universidade Estadual Paulista (UNESP)

