The Influence of Pacific and Indian Ocean sea surface temperatures on monthly rainfall in Mauritius

Caroline G. Staub, UF Geography Forrest R. Stevens, Peter R. Waylen, Christopher Martinez

Association of American Geographers Annual Meeting April 9, 2014. Tampa, Florida

Goal

Quantify rainfall anomalies associated with El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Subtropical Indian Ocean Dipole (SIOD) in Mauritius.

Research questions

- 1) Are individual and combined phases of ENSO, IOD and SIOD associated with significant monthly rainfall anomalies?
- 2) How do these relationships vary across the island?

Rationale

Once the site-specific relationship is defined, signs of developing events can be incorporated into long range weather forecasts, agricultural strategies, climate risk management plans

Why Small Island Developing States?

A need

- Most sensitive to climate change
- High uncertainty in Climate Change projections
- Little political bargaining power

An Opportunity

- Pre-satellite data on tropical oceans*
- Sensitivity : "Canary in the coal mine" of Climate Change

http://www.nytimes.com/interactive/2009/12/05/world/climate-graphic-players.html International best track archive for climate stewardship: http://www.katrisk.com/products.html

Study Area

SW Indian Ocean (20.2°S 57.3°E)

Small

Densely populated

Complex topography

Rainfall seasonalhighly variable across space and time

www.operationworld.org

ENSO, IOD and SIOD

Similarities

Responsible for climate variability at the same (temporal) scale

- Phases (warm and cool)
- Periodicity

Differences

- Influence on IO SST
- Structure
- Center of activity
- Duration
 - Seasonal phase locking (Dipoles)
- Formation mechanism
 IOD/ENSO vs SIOD

Methods

Data and Sources

Monthly Rainfall totals - 20 rainfall stations 1960-2011 (Monthly Met. Summaries)

Variables

- Monthly anomalies
- Nino3.4, Dipole Mode Index (DMI), Subtropical Dipole Index (SDI)
- Phases 0/1 Dummy variables

Analysis

- Break identification + phase frequency distribution
- Relationship with monthly rainfall anomalies
 Collective significance of signal

Results and discussion

Results and discussion

No. of observations = 612, no. of predictors = 19. Adjusted R Square (average across stations) = 0.036.

Results and Discussion

Results and Discussion

Contribution so far

Data accessibility

Scientific evidence

- Spatially explicit estimates of rainfall response to ENSO, IOD, and SIOD
- SIOD-, IOD+ and EI Niño associated with anomalously wet years
- Interacting processes result in severe dry periods
- Relationships are distinct and different from those observed in S. Africa
- Fodder for the formulation of new scientific questions

Soon...

Break down the science – make it more digestible!

Use it to answer plausible "what if" questions

Help managers and decision makers solve problems faster

Funding

- Rufford Small Grants for Nature Conservation
- UF Graduate School
- UF Tropical Conservation and Development Program
- UF Center for African Studies
- Jeanne and Hunt Davis Foundation

Data and Logistics

- Mauritius Meteorological Services (MMS)
- Mauritius Meteorological Society
- Mauritius Sugar Industry Research Institute (MSIRI)
- Sugar Estates Alteo, Medine, Terra, Omnicane
- Volunteers from the University of Mauritius (UoM)

MAURITIUS SUGAR INDUSTRY RESEARCH INSTITUTE